Induced interaction between impurities from superfluid EFT

Keisuke Fujii

Department of Physics, Institute of Science Tokyo

Symmetry and Effective Field Theory of Quantum Matter

28 November 2024

KF, M. Hongo, & T. Enss, PRL. **129**, 233401 (2022) Y. Akamatsu, S. Endo, KF, M. Hongo, PRA **110**, 033304 (2024)

Plan of this talk

1.Introduction of the polaron

- Polaron in ultracold atoms
- Induced interaction between polarons
- **2.EFT approach to induced interactions**

3.Complex-valued induced interaction in finite-temperature media

4.Summary

Impurities immersed in quantum gases 2/20

Polaron in ultracold atoms

- : an impurity interacting with quantum gas particles
	- ✓**High experimental controllability** ‣ Ultracold atoms provide a simple and ideal research platform.
	- ▶ Impurity problem appears across discipline.

e.g., heavy quarks in QGP, electrons in lattice phonons

From One to Two

- One impurity problem
	- : effective mass, mobility, dressing cloud, etc.
- Two impurity problem

: induced interaction, bipolaron state, etc.

A. Camacho-Guardian, L. A. Peña Ardila, T. Pohl, and G. M. Bruun, "Bipolarons in a Bose-Einstein Condensate", PRL **121**, 013401 (2018)

Induced Interaction 3/20

Theoretical setting

: two test impurities in a medium separated by a distance *r*

 \blacktriangleright Medium (quasi-)particles induce interactions $V(r)$ between them.

At long distances, $V(r)$ is dominated by **the low-energy behavior of the mediating (quasi-)particles**. **In superfluids, superfluid phonons (NG mode)**

Superfluid EFT can universally predict the long-distance behavior of *V*(*r*).

(i) Universal power-law force (ii) Universal power-law imaginary part in finite-T media

KF, M. Hongo, & T. Enss, PRL **129**, 233401 (2022); Y. Akamatsu, S. Endo, KF, M. Hongo, PRA **110**, 033304 (2024)

r

Plan of this talk

1.Introduction of the polaron

2.EFT approach to induced interactions

- Theoretical formulation
- Van der Waals potential mediated by phonons

3.Complex-valued induced interaction in finite-temperature media

Theoretical formulation of polaron physics

5/20

✓**Microscopic model :**

Medium gas interacting with impurities

 $\mathcal{L}_{\text{micro}}(x) = \mathcal{L}_{\text{imp}}(x) + \mathcal{L}_{\text{medium}}(x) + \mathcal{L}_{\text{int}}(x)$

‣Impurity-medium interaction in the contact *s*-wave channel

$$
\mathcal{L}_{\text{int}}(x) = -g_{IM}\Phi^{\dagger}(x)\Phi(x)\psi^{\dagger}(x)\psi(x)
$$

Impurity density

 $\sqrt{\text{Our problem is to find } S_{\text{polaron}}[\Phi,\Phi^\dagger]}$ by integrating out the medium $\exp \left[i S_{\rm polaron} [\Phi,\Phi^\dagger] \right] = \int \! \mathcal{D} (\psi, \psi^\dagger) \, \exp \left[i \int \! dt d^3 \! x \, \mathcal{L}_{\rm micro}(x) \right]$

‣Formally simple, but difficult to perform the integration

Theoretical formulation of polaron physics

6/20

✓**Microscopic model :**

Medium gas interacting with impurities

 $\mathcal{L}_{\text{micro}}(x) = \mathcal{L}_{\text{imp}}(x) + \mathcal{L}_{\text{medium}}(x) + \mathcal{L}_{\text{int}}(x)$

‣Impurity-medium interaction in the contact *s*-wave channel

$$
\mathcal{L}_{\text{int}}(x) = -g_{IM}\Phi^{\dagger}(x)\Phi(x)\psi^{\dagger}(x)\psi(x)
$$

Impurity density

✓**EFT approach**

 $\mathcal{L}_{\text{eff}}(x) = \mathcal{L}_{\text{imp}}(x) + \mathcal{L}_{\text{SF-EFT}}(x) + \mathcal{L}_{\text{int}}(x)$

▶ Our task

- Write down the superfluid EFT $\mathcal{L}_{\text{SF-EFF}}(x)$
- Represent $\mathcal{L}_{\text{int}}(x)$ with phonon fields

Superfluid EFT 7/20

Medium $gas = Non-relativistic gas (cold atomic gas)$

 $\mathcal{L}_{\text{SF-EFFT}}(x) = \mathcal{P}(\theta(x))$ $\mathcal{P}(\mu)$: Pressure as a function of μ **Galilean-invariant combination :** $\theta(x) = \mu - \partial_t \phi(x) - \frac{(\nabla \phi(x))^2}{2}$ ✓**Galilean-invariant superfluid EFT** Superfluid phonon field : *ϕ*(*x*)

M. Greiter, F. Wilczek, & E. Witten (1989); D. T. Son & M. Wingate, (2006).

‣**Interaction term**

 $\mathcal{L}_{int}(x) = -g_{IM}\Phi^{\dagger}(x)\Phi(x)n(\theta(x))$ with $n(\mu) = \mathcal{P}'(\mu)$

Effective theory for polarons

√ Our effective theory
 $\mathcal{L}_{\text{eff}}(x) = \mathcal{L}_{\text{imp}}(x) + \mathcal{P}(\theta(x)) - g_{IM} \Phi^{\dagger}(x) \Phi(x) n(\theta(x))$

• Galilean invariant combination $\theta(x) = \mu - \partial_t \phi(x) - \frac{(\nabla \phi(x))^2}{2m}$

- ▶ Our assumptions are only two:
	- **• Galilean invariant medium**
	- **• Contact s-wave impurity-medium coupling**
	- Universal!! **: Independent of the details of the medium**

Our remaining task is **to calculate induced interactions from our effective theory**

8/20

impurity

phonon gas

pion gas

cf. nuclear forces are computed from chiral effective field theory See e.g., R. Machleidt & D. R. Entem, "Chiral effective field theory and nuclear forces," Phys. Rept. **503**, 1 (2011). **nucleon**

Effective theory for polarons

√ Our effective theory
 $\mathcal{L}_{\text{eff}}(x) = \mathcal{L}_{\text{imp}}(x) + \mathcal{P}(\theta(x)) - g_{IM} \Phi^{\dagger}(x) \Phi(x) n(\theta(x))$

► Galilean invariant combination $\theta(x) = \mu - \partial_t \phi(x) - \frac{(\nabla \phi(x))^2}{2m}$

- ▶ Our assumptions are only two:
	- **• Galilean invariant medium**
	- **• Contact s-wave impurity-medium coupling**
- Universal!! **: Independent of the details of the medium**

Our remaining task is **to calculate induced interactions from our effective theory**

At weak $\bullet \overset{g_{IM}}{\longleftrightarrow} \bullet$ $V(r) = -g_{IM}^2 \lim_{\omega \to 0} \text{Re}[G^R(\vec{r}, \omega)]$

correlation function of the impurity density

impurity

phonon gas

Induced interaction mediated by phonons 10/20

Expanding $\mathcal{P}(\theta)$ & $n(\theta)$ and keeping the leading terms with rescaling $\varphi = \sqrt{\chi} \phi$ $\mathcal{L}(x) = \mathcal{L}_{\text{imp}}(x) - g_{IM} n \Phi^{\dagger} \Phi + \frac{1}{2} (\partial_t \varphi)^2 - \frac{1}{2} c_s^2 (\nabla \varphi)^2 + g_{IM} \left[\sqrt{\chi} \partial_t \varphi + \frac{(\nabla \varphi)^2}{2m} \right] \Phi^{\dagger} \Phi + \cdots$ $\chi = n'(\mu)$: compressibility

 $c_s = \sqrt{n/(m\chi)}$: speed of sound

Kinetic term for phonons showing the linear dispersion

✓**Interaction terms between impurities and phonons**

 $g_{IM}\sqrt{\chi}\partial_t\varphi\Phi^\dagger\Phi$: one-body coupling g_{IM}

$$
{}_{IM}\frac{(\boldsymbol{\nabla}\varphi)^2}{2m}\Phi^\dagger\Phi:\textsf{two-body coupling}
$$

‣**The coefficients are constrained by the Galilean invariance**

 $g_{IM}\sqrt{\chi}\partial_t\varphi\Phi^\dagger\Phi \sim$

• One-body coupling **One-phonon exchange**

 $\tilde{V}(k) \sim$

$$
\omega\!=\!0,\,\boldsymbol{k})\,\,\sim\,\lim_{\omega\rightarrow 0}\Bigl(g_{IK}\sqrt{\chi}\omega\Bigr)^{\!2}\Delta(\omega,\boldsymbol{k})=0
$$

proportional to *ω*=0 **due to the time-derivative coupling**

One-phonon exchange & Yukawa potential 11/20

 E_{k} Bogoliubov dispersion : $E_k = \sqrt{\varepsilon_k(\varepsilon_k + 2\mu)}$ $\varepsilon_k = k^2/(2m)$

 $\overline{}$

−1

ξ }

Linear

Quadratic

k

r (healing length : $\xi = 1/\sqrt{2m\mu}$) See e.g. Pethick & Smith's text book

"Bose-Einstein condensation in Dilute gases"

e[−] ²*r*/*^ξ*

‣Linear part has NO contribution to the one-phonon exchange. ‣Yukawa potential effectively vanishes at long distances **consistent with the result from our EFT**

Induced interaction mediated by phonons 12/20

Expanding $\mathcal{P}(\theta)$ & $n(\theta)$ and keeping the leading terms with rescaling $\varphi = \sqrt{\chi} \phi$ $\mathcal{L}(x) = \mathcal{L}_{\text{imp}}(x) - g_{IM} n \Phi^{\dagger} \Phi + \frac{1}{2} (\partial_t \varphi)^2 - \frac{1}{2} c_s^2 (\nabla \varphi)^2 + g_{IM} \left[\sqrt{\chi} \partial_t \varphi + \frac{(\nabla \varphi)^2}{2m} \right] \Phi^{\dagger} \Phi + \cdots$ $\chi = n'(\mu)$: compressibility **Kinetic term for phonons**

 $c_s = \sqrt{n/(m\chi)}$: speed of sound

 $g_{IM}\frac{(\nabla \varphi)^2}{2m} \Phi^{\dagger} \Phi \sim$

showing the linear dispersion

✓**Interaction terms between impurities and phonons**

 $g_{IM}\sqrt{\chi}\partial_t\varphi\Phi^\dagger\Phi$: one-body coupling $g_{IM}\frac{(\boldsymbol{\nabla}\varphi)^2}{2m}\Phi^\dagger\Phi$: two-body coupling

- ‣**The coefficients are constrained by the Galilean invariance**
- One-body coupling **the set one-phonon exchange** (NO contribution)
- ▶ Two-body coupling wo-phonon exchange

Van der Waals force from two-phonon exchange 13/20

Induced potential in BCS-BEC crossover

14/20

Our results are valid in the entire BCS-BEC crossover **impurity**

- ▶ Our results are based only on two assumptions
	- **• Galilean invariant medium**
	- **• Contact s-wave impurity-medium coupling**

Two-comp. Fermi gas

$\sqrt{}$ Plotting the ratio as a function of the scattering length

 $\frac{V_{T=0}}{V_{\text{Yukawa}}} = \frac{43}{16\sqrt{2}\pi^2} \frac{1}{n\xi^3} \frac{e^{\sqrt{2}x}}{x^6}$ with $x = r/\xi$ with the use of the experimental data

S. Hoinka, et al., Nature Physics **13**, 943 (2017)

- \triangleright The van der Waals potential is small in the BEC side, but becomes relatively larger when $-(k_F a)^{-1}$ increases
- ‣ **At unitarity, the van der Waals potential is dominant in** $r \geq 8\xi$.

At unitarity, our effective theory is robust because of small *ξ*

Plan of this talk

1.Introduction of the polaron

2.EFT approach to induced interactions

3.Complex-valued induced interaction in finite-temperature media

- Imaginary part of *V*(*r*)
- Universal low-energy scattering between impurities & the medium

4.Summary

Finite temperature effect 16/20

The medium serves as a thermal bath for impurities.

Finite-T medium ≃ **thermal bath**

‣ Mediating (quasi-)particles obey the Bose/Fermi distributions.

 $V(r) \Big|_{T=0} \sim 1/r^7$ *V*(*r*) $\Big|_{T>0} \sim 1/r^6$

The induced interaction is smoothed by thermal fluctuations of mediating (quasi)-particles.

 Yes !! $V_{\text{induced}}(r)$ has an imaginary-part describing the loss of correlation between impurities. **Is there any new effect on** $V_{induced}(r)$ specific to finite-T media?

‣Possessing **non-Hermitian nature** due to its environmental medium effect

Originally, $V_{\text{Im}}(\vec{r})$ was introduced in subatomic physics. M. Laine, *et. al.*, JHEP (2007)

Definition of the potential in finite-T media 17/20

 $\sqrt{\text{Real-time correlation function}} \Psi(\vec{r},t) \sim \langle \hat{\Phi}(\frac{\vec{r}}{2},t) \hat{\Phi}(-\frac{\vec{r}}{2},t) \hat{\Phi}^{\dagger}(-\frac{\vec{r}}{2},0) \hat{\Phi}^{\dagger}(\frac{\vec{r}}{2},0) \rangle$

2. **annihilate** two impurities at time $t \neq 1$. **create** two impurities at $t = 0$

 $\Psi(\vec{r},t)$ obeys **the Schrödinger equation** at long times as a wave function for relative motion ⃗

$$
i\frac{\partial}{\partial t}\Psi(\vec{r},t) \simeq \left[-\frac{\nabla^2}{2M} + \Sigma + V(r)\right]\Psi(\vec{r},t)
$$

= $E(\vec{r})$ The infinite
8 subtracti

ely heavy-mass limit ing the self-energy part

$$
V(\vec{r}) = E(\vec{r}) - \lim_{r \to \infty} E(\vec{r})
$$

 $-\vec{r}/2$ $\vec{r}/2$

‣The imaginary part describes the decay of the absolute value as |Ψ(*r*, *t*)| ∼ *e*−|Im*E*|*^t* $\ddot{}$

$$
\text{At weak} \quad \left\{ \bigcup_{\alpha=0}^{M} V_{\text{Re}}(\vec{r}) \equiv -g^2 \lim_{\omega \to 0} \text{Re}[G^R(\vec{r}, \omega)] \quad V_{\text{Im}}(\vec{r}) \equiv -g^2 \frac{2}{\beta} \lim_{\omega \to 0} \frac{\text{Im}[G^R(\vec{r}, \omega)]}{\omega}
$$

Imaginary part of the induced interaction 18/20

$$
\mathcal{L}(x) = \mathcal{L}_{\text{imp}}(x) - g_{IM} n \Phi^{\dagger} \Phi + \frac{1}{2} (\partial_t \varphi)^2 - \frac{1}{2} c_s^2 (\nabla \varphi)^2 + g_{IM} \left[\sqrt{\chi} \partial_t \varphi + \frac{(\nabla \varphi)^2}{2m} \right] \Phi^{\dagger} \Phi + \cdots
$$

▶ The two-phonon exchange process provides the long-range behavior

• Real part $(c_s/T:$ temperature length scale)

 $V_{\rm Re}(r) \sim \begin{cases} -g^2 r^{-7} & (r \ll c_s/T) \\ -q^2 T r^{-6} & (r \gg c_s/T) \end{cases}$

• Imaginary part

 $V_{\rm Im}(r) \sim \begin{cases} -g^2 T^7 & (r \ll c_s/T) \[1ex] -g^2 T^5 r^{-2} & (r \gg c_s/T) \end{cases}$

Y. Akamatsu, S. Endo, KF, M. Hongo, [arXiv:2312.08241] (2023)

Superfluid (phonon gas)

impurity

The origin of the power-law decay r^{-2} 19/20

- In superfluids $V_{\text{Im}}(r) \sim -g^2 T^5 r^{-2}$
- In non-interacting Fermi gases $\frac{V_{\text{Im}}(r \gg k_F^{-1})}{T_F} \simeq -\frac{2(k_F a_{IM})^2}{\pi} \frac{T/T_F}{1+e^{-T_F/T}(k_F r)^2}$

Im

Y. Akamatsu, S. Endo, KF, M. Hongo, PRA **110**, 033304 (2024)

 $V_{\text{Re}}(r) \sim \text{exp. damping}$
 $V_{\text{Im}}(r) \sim r^{-2}$

 \triangleright The power law of $V_{\text{Re}}(r)$ at long distance is due to the gapless nature of excitations.

What about the power law of $V_{Im}(r)$?

$$
V_{\mathrm{Im}}(\vec{r}) \equiv -g^2 \frac{2}{\beta} \lim_{\omega \to 0} \frac{\mathrm{Im}[G^R(\vec{r},\omega)]}{\omega}
$$

It's NOT due to the gapless nature of excitations. Counterexample : the induced potential between heavy-quarks in QGP

It's due to **the common structure of the low-energy scattering**.

 $2 \sqrt{N}$ on-zero scattering cross section in the limit of $k \to 0$

 r^{-2} behavior

Summary & Outlooks 20/20

(i) Universal r^{-7} force at zero temperatures (ii) Universal r^{-2} imaginary part in finite-T superfluids KF, M. Hongo, & T. Enss, PRL. **129**, 233401 (2022); Y. Akamatsu, S. Endo, KF, M. Hongo, PRA **110**, 033304 (2024) Superfluid EFT can universally predict the long-distance behavior of *V*(*r*).

Insights from **well-controlled ultracold atom** experiments into uncontrolled experimental situations

Future directions

• Fate of bound states

While $V_{\text{Re}}(r)$ create bound states between impurities, $V_{\text{Im}}(r)$ breaks them.

• Other EFTs with impurities

e.g., Magnon-exchange force from (anti-)ferromagnet EFT, and so on... Let's discuss!!