Phase Transition of Vortices in Higgs-Confinement Continuity

based on arXiv: 2411.03676

Yoshimasa Hidaka (YITP, Kyoto University) Collaboration with Dan Kondo (Univ. of Tokyo), Tomoya Hayata (Keio Univ.)

Strong coupling

• Motivation What we know about quark hadron continuity Phase transition on a vortices Summary and Outlook

Motivation: QCD phase diagram

Fukushima, Hatsuda, Rept. Prog. Phys. 74 (2011) 014001

What we know For 3-flavor QCD : $G = SU(3)_f \times U(1)_B$ •Superfluid(dilute phase) Baryon pair condensation $\Delta = \langle \Lambda \Lambda \rangle \neq 0 \qquad \Lambda \sim u ds$ $SU(3)_f \times U(1)_B \rightarrow SU(3)_f$ Color super conductor (dense phase) "quark pair condensate" $(\Phi_L)^i_a = \epsilon^{ijk} \epsilon_{abc} \langle (q_L)^b_j (Cq_L)^c_k \rangle = -\epsilon^{ijk} \epsilon_{abc} \langle (q_R)^b_j (Cq_R)^c_k \rangle$ $SU(3)_f \times U(1)_B \rightarrow SU(3)_f$

Quark hadron continuity

Hadronic superfluid

Tamagaki ('70), Hoffberg et al ('70)

Symmetry breaking patter is the same ⇒Quark hadron continuity

Baryons ⇒ Quarks Vector meson ⇒ Gluons cf. Hatsuda, Tachibana, Yamamoto, Baym ('06)

Excitations

Color flavor locked phase (CFL phase)

Alford, Rajagopal, Wilczek ('99)

Can the two phases be distinguished for topological reasons?

Topological ordered phase Spontaneously broken generalized (discrete) global symmetries

SPT phase, topological ordered phase, ...

Generalized global symmetry Gaiotto, Kapustin, Seiberg, Willett ('14) Ordinary global symmetry of

Quantum field theory(QFT) in (d+1) dimensions

Symmetry operator

 U_{g} $U_{g'}$ $U_{gg'}$ d dimensional topological object labeled by $g \in G$

Charged object

Φ

0-dimensional object labeled by representation of G

Group law

 $g,g' \in G$ $gg' \in G$

charged object is surrounded by U_g ⇒symmetry transformation

Generalized global symmetry Gaiotto, Kapustin, Seiberg, Willett ('14) QFT in (d+1) dimension p form symmetry G W

Symmetry generator

d-p dimensional topological object labeled by $g \in G$

p-dimensional object labeled by representation of G

Generalized global symmetry Gaiotto, Kapustin, Seiberg, Willett ('14) QFT in (d+1) dimension *p* form symmetry *G*

 $U_{g'}$

Symmetry generator: (d-p)-dimensional

8

Charged object: p-dimensional **group law** $g, g' \in G$ $gg' \in G$

representaion

gg'

Example: U(1) gauge theory

Charged object

Wilson ('t Hooft) loop

 $U(1)_{E}^{[1]} \qquad W = \exp\left[i \oint_{M(1)} A\right]$

Gaiotto, Kapustin, Seiberg, Willett ('14)

Charge

Surface operators **Electric:** $Q_e = \frac{1}{e^2} \int_{M(2)} \star F$

 $U(1)_{M}^{[1]}$ $H = \exp\left[i\oint_{M^{(1)}} \tilde{A}\right]$ Magnetic: $Q_{m} = \frac{1}{2\pi}\int_{M^{(2)}} F$

Quantum electrodynamics There are $U(1)_M^{[1]}$ magnetic 1-form symmetry

VacuumSSB $U(1)_{M}^{[1]}$ Emergent
symmetry $U(1)_{E}^{[1]}$

Photons are Nambu-Goldstone modes

Superconductor Unbroken $U(1)^{[1]}_M$ Emergent
symmetry (SSB) $\mathbb{Z}_2^{[1]} \times \mathbb{Z}_2^{[2]}$ **Topological order** $\mathbb{Z}_{2}^{[1]}$: cooper pair has charge 2 $\mathbb{Z}_{2}^{[2]}$: π magnetic flux inside of vortex

Thought experiment : rotating neutron stars

Consider continuity of vortices

• Circ

Quantum vortex

Circulation

• Emergent symmetry

Hadronic superfluid phase di-baryons condense

Symmetry breaking pattern $SU(3)_f \times U(1)_B \to SU(3)_f$

- $\Delta = \langle \Lambda \Lambda \rangle \neq 0 \quad \Lambda \sim u ds$
- Topological excitation: U(1) vortex $\pi_1(U(1)_R) = \mathbb{Z}$
- $\phi = \Delta f(r)e^{i\theta} \quad \int \frac{d\theta}{2\pi} \in \mathbb{Z} \quad f \xrightarrow{r \to 0} 0 \quad f \xrightarrow{r \to \infty} 1$

Quantum number in Hadronic superfluid phase Global $U(1)_R$ symmetry is broken U(1) vortex: topological defect $\Delta e^{i\theta}$

 $u_B = \frac{d\theta}{2\pi}$: Winding number

 $2\mu_R$: Baryon chemical potential of order parameter

Circulation: $\int v = \int \frac{d\theta}{2\mu_B} = \frac{2\pi\nu_B}{2\mu_B}$

Color-flavor locking phase U quark pair $-\mu_q$

 $(\Phi_L)^i_a = \epsilon^{ijk} \epsilon_{abc} \langle (q_L)^b_i (Cq_L)^c_k \rangle \quad (\Phi_R)^i_a = \epsilon^{ijk} \epsilon_{abc} \langle (q_R)^b_i (Cq_R)^c_k \rangle$

 $\Phi := \Phi_L = -\Phi_R = \begin{pmatrix} \Delta_{\text{CFL}} & 0 & 0 \\ 0 & \Delta_{\text{CFL}} & 0 \\ 0 & 0 & \Delta_{\text{CFI}} \end{pmatrix}$

Non-abelian CFL vortex

Balachandran, Digal, Matsuura, PRD73, 074009 (2006)

 $A_i = -\frac{\epsilon_{ij}x^j}{\frac{\rho^2 r^2}{2r^2}}(1 - h(r))\operatorname{diag}\left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$ both superfluidity and superconductivity

Numerica

Alford, Mallavarapu, Vachaspati, Win

U(1) vortex in Hadronic phase ν_B Circulation 2π ν_R : Winding number $\langle W \rangle = |\langle W \rangle|$

U(1) vortex in CFL $\langle W \rangle = |\langle W \rangle|$

Non-abelian vortex in CFL 10 $\overline{}$ $2\pi \nu_A / 3$ Circulation 2π $\langle W \rangle = e^{i \frac{2\pi\nu_A}{3}} |\langle W \rangle|$

Cherman, Sen, Yaffe, PRD 100, 034015 (2019)

Alford, Baym, Fukushima, Hatsuda, Tachibana ('19)

Circulation $2\pi \frac{\nu_A}{2\mu_q} = 2\pi \frac{3\nu_A}{2\mu_B}$

CFL vortex: emergent $\mathbb{Z}_3^{[2]}$ symmetry

What is the fate of $e^{\frac{2\pi}{3}i}$? The magnetic flux will not penetrate through the vortices in the hadronic phase \Rightarrow This allow us to distinguish the phases. Cherman, Jacobson, Sen, Yaffe ('20), ('24)

Magnetic flux may penetrate through the vortices in the hadronic phase or dissipate during the transition. Hayashi ('23)

Topological ordered phase? However, it is not unbroken, i.e. not topological order

Hirono, Tanizaki ('19)

Phase transition on a vortices • Summary

Domain wall

Phase transition on a topological defect, while the bulk remains continuous? vortex Our answer is YES! Effective theory on a topological defect= a lower-dimensional field theory may exhibit phase transition Phase transitions may occur in quantum vortices.

Abelian Higgs model in (3+1) dimensions $S = -\beta_g \sum_{x,\mu < \nu} \cos(F_{\mu\nu}(x)) - \beta_H \sum_{x,\mu} \cos(\Delta_\mu \varphi(x) - qA_\mu(x))$ Field strength Scalar field (phase dof) Gauge field (phase dof) $\Delta_\mu(x) = a(x+\theta) - a(x)$

Fradkin-Schenker Phys. Rev. D 19, 3682 ('79)

 $S = -\beta_g \sum \cos \left(F_{\mu\nu}(x)\right) - \beta_H \sum \sum \cos \left(\Delta_{\mu}\varphi_a(x) + A_{\mu}(x)\right)$ $\overline{x}, \mu \! < \!
u$ Field strength

Symmetry $\varphi_1 \to \varphi_1 - \lambda$ $U(1)_{\text{gauge}} : \varphi_2 \to \varphi_2 - \lambda$ $A_{\mu} \to A_{\mu} + \Delta_{\mu} \lambda$ $U(1)_{\text{global}} : \begin{array}{c} \varphi_1 \to \varphi_1 + \theta \\ \vdots \\ \varphi_2 \to \varphi_2 - \theta \end{array}$ $\mathbb{Z}_{2F} \stackrel{\circ}{\cdot} \stackrel{\varphi_1}{\varphi_2} \xrightarrow{\varphi_2} \varphi_1$

$U(1)_{gauge} \times U(1)_{global}$ lattice mode cf. Motrunich, Senthil ('05) $x, \mu \ a = 1, 2$ Scalar field Gauge field (phase dof) $\Delta_{\mu}\varphi_{a}(x) = \varphi_{a}(x + \hat{\mu}) - \varphi_{a}(x)$

Phase diagram **Fradkin-Schenker**

 $S = -\beta_g \quad \sum \cos \left(F_{\mu\nu}(x)\right) - \beta_H \quad \sum \cos \left(\Delta_{\mu}\varphi_a(x) + A_{\mu}(x)\right)$ $x, \mu < \nu$ **Field strength**

Symmetry $\varphi_1 \to \varphi_1 - \lambda$ $U(1)_{\text{gauge}} : \varphi_2 \to \varphi_2 - \lambda$ $A_{\mu} \to A_{\mu} + \Delta_{\mu} \lambda$ $U(1)_{\text{global}} : \begin{array}{c} \varphi_1 \to \varphi_1 + \theta \\ \varphi_2 \to \varphi_2 - \theta \end{array}$ $\mathbb{Z}_{2F} \stackrel{\circ}{\cdot} \stackrel{\varphi_1}{\varphi_2} \xrightarrow{\varphi_2} \varphi_1$

$U(1)_{gauge} \times U(1)_{global}$ lattice model cf. Motrunich, Senthil ('05) $x, \mu \ a = 1, 2$ Scalar field Gauge field (phase dof)

Phase diagram

 $S = -\beta_g \sum \cos \left(F_{\mu\nu}(x)\right) - \beta_H \sum \sum \cos \left(\Delta_{\mu}\varphi_a(x) + A_{\mu}(x)\right)$ $x, \mu < \nu$ Field strength $x, \mu a=1, 2$

Emergent symmetry at large β_H (SSB of $U(1)_{global}$) **YH, Kondo ('22)**

Emergent $U(1)^{[2]}$ $e^{i\frac{\theta}{2\pi}\int_C (d\varphi_1 - d\varphi_2)}$ Symmetry operator

$U(1)_{gauge} \times U(1)_{global}$ lattice mode

Scalar field (phase dof)

 $\mathbb{Z}^{[2]}$

 $e^{i\frac{1}{2}\int_C (d\varphi_1 + d\varphi_2)}$

Gauge field $\Delta_{\mu}\varphi_{a}(x) = \varphi_{a}(x + \hat{\mu}) - \varphi_{a}(x)$

Strong coupling $\beta_g \ll 1$ Integrating over gauge fields $S_{\text{eff}} = -\sum \ln I_0 \left[2\beta_H \cos \left(\frac{\Delta_\mu \varphi_1(x) - \Delta_\mu \varphi_2(x)}{2} \right) \right]$ $I_0(z)$:Modified Bessel Essential d.o.f. is $\varphi_1 - \varphi_2$ i.e., one d.o.f.

Distinguishable φ_1 and φ_2 \mathbb{Z}_{2F} is spontaneously broken on the vortices

Criterion of symmetry breaking:

Example: Ising model \mathbb{Z}_2 broken phase domain wall \mathbb{Z}_2 unbroken phase random configuration

When discrete symmetry is broken: twisting the boundary conditions by the symmetry causes the formation of domain walls

$U(1)_{gauge} \times U(1)_{global}$ model Weak coupling (\mathbb{Z}_{2F} broken) φ_2

Strong coupling (\mathbb{Z}_{2F} unbroken) randomized junctions

Correlation function of magnetic flux

At weak coupling long-range correlation

Spontaneous symmetry breaking

> **Phase transition** on a vortex

Critical point

Ising universality class $\nu = 1$, $\gamma = 7/4$

predicted in Motrunich, Senthil ('05)

- - **Codimension 3: Level crossing**

Phase transitions on domain wall junctions are also possible

Summary We found the phase transition on a vortex between strong and weak gauge couplings in superfluid phase

More generally, there can be phase transitions of various phase defects

> **Codimension 1: transition on a domain wall Codimension 2: transition on a vortex**

EFT on $U(1) \times U(1)$ model~lsing model EFT of CFL phase $\sim CP(2)$ model

Ground state of CP(2) model Gapped phase, no flavor breaking \Rightarrow continuously connects to the hadronic phase? What happens if fermion d.o.f. is included?

Outlook