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We focus on systems with  symmetryU(1)global × Ggauge

Adding fundamental  
charged matter and Higgssing it 

Summary

Strong coupling 
βg = 1/g2

Weak coupling 

and consider SSB of U(1)global

 superfluidU(1)

We show something happened between strong and weak coupling.
⇒Phase transition on vortex even in bulk has no phase transition.

Confined phase Deconfined phase

Strong coupling 
βg = 1/g2

Weak coupling 

Pure gauge theory
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Figure 1. Conjectured QCD phase diagram with boundaries that define various
states of QCD matter based on S�B patterns.

The chiral transition is a notion independent of the deconfinement transition. In
section 3.2 we classify the chiral transition according to the S�B pattern.

2.2. Conjectured QCD phase diagram

Figure 1 summarizes our state-of-the-art understanding on the phase structure of QCD
matter including conjectures which are not fully established. At present, relatively firm
statements can be made only in limited cases – phase structure at finite T with small
baryon density (µB ⌧ T ) and that at asymptotically high density (µB � ⇤QCD).
Below we will take a closer look at figure 1 from a smaller to larger value of µB in
order.

Hadron-quark phase transition at µB = 0: The QCD phase transition at finite
temperature with zero chemical potential has been studied extensively in the numerical
simulation on the lattice. Results depend on the number of colours and flavours as
expected from the analysis of e↵ective theories on the basis of the renormalization
group together with the universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the finite size scaling analysis
on the lattice [37], and the critical temperature is found to be Tc ' 270MeV. For
Nf > 0 light flavours it is appropriate to address more on the chiral phase transition.
Recent analyses on the basis of the staggered fermion and Wilson fermion indicate a
crossover from the hadronic phase to the quark-gluon plasma for realistic u, d and s

quark masses [38, 39]. The pseudo-critical temperature Tpc, which characterizes the
crossover location, is likely to be within the range 150MeV� 200MeV as summarized
in section 4.2.

Even for the temperature above Tpc the system may be strongly correlated and
show non-perturbative phenomena such as the existence of hadronic modes or pre-
formed hadrons in the quark-gluon plasma at µB = 0 [28, 40] as well as at µB 6= 0
[41, 42, 43]. Similar phenomena can be seen in other strong coupling systems such as

Motivation: QCD phase diagram
Fukushima, Hatsuda, Rept. Prog. Phys. 74 (2011) 014001 



What we know 
For 3-flavor QCD : G = SU(3)f × U(1)B

●Superfluid(dilute phase) 
Baryon pair condensation

SU(3)f × U(1)B → SU(3)f

Λ ∼ udsΔ = ⟨ΛΛ⟩ ≠ 0

●Color super conductor (dense phase)
“quark pair condensate”

= − ϵijkϵabc⟨(qR)b
j (CqR)c

k⟩(ΦL)i
a = ϵijkϵabc⟨(qL)b

j (CqL)c
k⟩

SU(3)f × U(1)B → SU(3)f



Hadronic superfluid Color flavor locked phase (CFL phase) 

μB
Symmetry breaking patter is the same

⇒Quark hadron continuity

Schafer and Wilczek (’99)

cf. Hatsuda, Tachibana, Yamamoto, Baym (’06)

Quark hadron continuity

u s
d

Alford, Rajagopal, Wilczek (’99)Tamagaki ('70), Hoffberg et al (’70)

Baryons ⇒ Quarks 
Vector meson ⇒ GluonsExcitations

超流動相



Schafer and Wilczek (’99)

Can the two phases be distinguished  
for topological reasons?

SPT phase, topological ordered phase, …

Topological ordered phase 

Spontaneously broken  
generalized (discrete) global symmetries≈



 dimensional topological  
object labeled by  

d

g ∈ G

Ordinary global symmetry of 
Quantum field theory(QFT) in (d+1) dimensions

Ug
ϕ

-dimensional object 
labeled by representation of  

0
G

Generalized global symmetry

Symmetry operator Charged object

Gaiotto, Kapustin, Seiberg, Willett (’14)

Ug Ug′￼
Ugg′￼

= Group law
g, g′￼∈ G
gg′￼∈ G



Generalized global symmetry

Transformation:

Ug

= Vg

= Vg
charged object is  
surrounded by  

⇒symmetry transformation 
Ug

QFT in (d+1) dimension 
Gaiotto, Kapustin, Seiberg, Willett (’14)

Ugϕ = VgϕUg
Ug

Representation 

matrix



Ug W

Generalized global symmetry

 form symmetry p G
QFT in (d+1) dimension 

 dimensional topological  
object labeled by  

d − p

g ∈ G

-dimensional object 
labeled by representation of  

p
G

Symmetry generator Charged object

Gaiotto, Kapustin, Seiberg, Willett (’14)



 form symmetry p G

Charged object: 
p-dimensional

Ug Ug′￼

Symmetry generator: 
(d-p)-dimensional

Ugg′￼

= group law
g, g′￼ ∈ G
gg′￼ ∈ G

= Vg
representaion

Generalized global symmetry
QFT in (d+1) dimension 

Gaiotto, Kapustin, Seiberg, Willett (’14)



Example: U(1) gauge theory

Surface operators

Charge

Electric:

Magnetic: Qm =
1

2⇡

Z

M(2)

F

Wilson (’t Hooft) loop

Charged object

W = exp
h
i

I

M(1)

A
i

H = exp
h
i

I

M(1)

Ã

i

<latexit sha1_base64="Y+FLobapASGi4gbgPTW2AQFj7kc="></latexit>

Qe =
1

e2

Z

M(2)

?F

U(1)[1]
M

U(1)[1]
E

Gaiotto, Kapustin, Seiberg, Willett (’14)



Quantum electrodynamics

Vacuum

There are  magnetic 1-form symmetryU(1)[1]
M

Superconductor
U(1)[1]

MSSB U(1)[1]
M

Unbroken

ℤ[1]
2 × ℤ[2]

2
Emergent 
symmetry (SSB)
Topological order

ℤ[1]
2 : cooper pair has charge 2

ℤ[2]
2 :  magnetic flux inside of vortex π

Emergent  
symmetry U(1)[1]

E

Photons are  
Nambu-Goldstone  

modes



Thought experiment : rotating neutron stars

CFL phase

Hadronic 
superfluid

Quantum vortex

Consider continuity of vortices

●Circulation
●Emergent symmetry



Hadronic superfluid phase
di-baryons condense

Λ ∼ udsΔ = ⟨ΛΛ⟩ ≠ 0

SU(3)f × U(1)B → SU(3)f
Topological excitation: U(1) vortex π1(U(1)B) = ℤ

ϕ = Δf(r)eiθ f → 0 f → 1
r → ∞r → 0

Symmetry breaking pattern

∫
dθ
2π

∈ ℤ



Quantum number in Hadronic 
superfluid phase 

Global  symmetry is brokenU(1)B

U(1) vortex: topological defect

Circulation: ∫ v = ∫
dθ
2μB

=
2πνB

2μB

: Baryon chemical potential of order parameter2μB

: Winding number νB = ∫
dθ
2π

Δeiθ



Color-flavor locking phase 
u

μq

u d s

Φ := ΦL = − ΦR =
ΔCFL 0 0

0 ΔCFL 0
0 0 ΔCFL

(ΦR)i
a = ϵijkϵabc⟨(qR)b

j (CqR)c
k⟩(ΦL)i

a = ϵijkϵabc⟨(qL)b
j (CqL)c

k⟩

u s
d

quark pair



Topological excitations

U(1) vortex
Φ := ΔCFL

eiθf(r) 0 0
0 eiθf(r) 0
0 0 eiθf(r)

G/H ≃
SU(3)c × U(1)B

ℤ3
≃ U(3)order parameter space

cf. Eto, Hirono, Nitta & Yasui, PTEP 2014, 012D01 (2014)

Non-abelian CFL vortex
Balachandran, Digal,  Matsuura, PRD73, 074009 (2006)

Φ := ΔCFL

eiθf(r) 0 0
0 g(r) 0
0 0 g(r)

= ΔCFLei θ
3

ei 2θ
3 f(r) 0 0

0 e−i θ
3 g(r) 0

0 0 e−i θ
3 g(r)

Ai = −
ϵijxj

g2
s r2

(1 − h(r))diag(−
2
3

,
1
3

,
1
3 ) both superfluidity and superconductivity



ALFORD, MALLAVARAPU, VACHASPATI, AND WINDISCH PHYSICAL REVIEW C 93, 045801 (2016)

(a) (b)

(c) (d)

FIG. 1. Plots of the total energy density in position space for (a) a superfluid vortex before decay, (b) fission of a superfluid vortex, (c)
formation of well-separated semi-superfluid vortices, and (d) semi-superfluid vortices repelling each other.

To probe the stability of the equilibrated vortex we add a
small perturbation |δ"(p)〉 to the superfluid vortex and evolve
it forward in time. The exact form of the perturbation is not
important, as long as it has some overlap with the unstable
mode (if any). If the vortex is unstable then even a tiny
initial perturbation with some component along the unstable
direction will grow exponentially as we evolve forward in
time. It quickly dominates the other components of the initial
perturbation. We tried three different perturbations for the "
field (initial gauge links put to unity without perturbation):

(a) A random configuration
Here we used 8 complex random numbers (uniformly
distributed between zero and 10−16) as entries for the
3 × 3 " matrices at each lattice site.

(b) The analytically obtained unstable mode for g = 0

This mode is constructed using (25), which is con-
trolled by two parameters, the direction n̂ and mag-
nitude of the displacement ε. Using the set {13×3,Tα}
as a complete basis, the radial profile serves as the
position-dependent coefficient of one or more of the
basis elements {Tα}, since 13×3 is a stable direction. We
usually used T8 only, but one can equally well choose
any other basis element or combinations thereof.

(c) The numerically obtained unstable mode (see below)

During an initial transient period tmin (which lasts longest
for the random initial perturbation) the unstable mode grows
to become the dominant component. After tmin the overlap
of the growing mode with the original perturbation grows
exponentially in time, following (29),

A(t) ≡ 〈δ"(p)|(|"〉t − |"sf〉) ∝ eγ t , tmin < t < tmax. (30)

045801-4

Alford, Mallavarapu, Vachaspati, Windisch, PRC 93, 045801 (2016)

U(1) vortex non-abelian vortices

Numerical Simulation
ALFORD, MALLAVARAPU, VACHASPATI, AND WINDISCH PHYSICAL REVIEW C 93, 045801 (2016)

(a) (b)

(c) (d)

FIG. 1. Plots of the total energy density in position space for (a) a superfluid vortex before decay, (b) fission of a superfluid vortex, (c)
formation of well-separated semi-superfluid vortices, and (d) semi-superfluid vortices repelling each other.

To probe the stability of the equilibrated vortex we add a
small perturbation |δ"(p)〉 to the superfluid vortex and evolve
it forward in time. The exact form of the perturbation is not
important, as long as it has some overlap with the unstable
mode (if any). If the vortex is unstable then even a tiny
initial perturbation with some component along the unstable
direction will grow exponentially as we evolve forward in
time. It quickly dominates the other components of the initial
perturbation. We tried three different perturbations for the "
field (initial gauge links put to unity without perturbation):

(a) A random configuration
Here we used 8 complex random numbers (uniformly
distributed between zero and 10−16) as entries for the
3 × 3 " matrices at each lattice site.

(b) The analytically obtained unstable mode for g = 0

This mode is constructed using (25), which is con-
trolled by two parameters, the direction n̂ and mag-
nitude of the displacement ε. Using the set {13×3,Tα}
as a complete basis, the radial profile serves as the
position-dependent coefficient of one or more of the
basis elements {Tα}, since 13×3 is a stable direction. We
usually used T8 only, but one can equally well choose
any other basis element or combinations thereof.

(c) The numerically obtained unstable mode (see below)

During an initial transient period tmin (which lasts longest
for the random initial perturbation) the unstable mode grows
to become the dominant component. After tmin the overlap
of the growing mode with the original perturbation grows
exponentially in time, following (29),

A(t) ≡ 〈δ"(p)|(|"〉t − |"sf〉) ∝ eγ t , tmin < t < tmax. (30)

045801-4

U(1) vortex decays into 
three non-abelian vortices



Circulation 2π
νB

2μB
: Winding number νB

Circulation 2π
νA

2μq
= 2π

3νA

2μB

U(1) vortex in CFL

Circulation 
2πνA/3

2μq
= 2π

νA

2μB

Non-abelian vortex in CFL

U(1) vortex in Hadronic phase

⟨W⟩ = |⟨W⟩ |

⟨W⟩ = |⟨W⟩ |

⟨W⟩ = ei 2πνA
3 |⟨W⟩ |

Cherman, Sen, Yaffe, PRD 100, 034015 (2019)

Alford, Baym, Fukushima, Hatsuda, Tachibana (’19)



Topological ordered phase?
CFL vortex: emergent  symmetryℤ[2]

3
However, it is not unbroken, i.e. not topological order

Hirono, Tanizaki (’19)

What is the fate of ?e
2π
3 i

Hayashi (’23)

Magnetic flux may penetrate through the vortices 
in the hadronic phase or dissipate during the transition.

The magnetic flux will not penetrate through the vortices 
in the hadronic phase  
⇒ This allow us to distinguish the phases.

Cherman, Jacobson, Sen, Yaffe (’20), (’24)
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Phase transition on a topological defect,  
while the bulk remains continuous?

Effective theory on a topological defect= 
a lower-dimensional field theory may exhibit  phase transition

Our answer is YES!

Domain wall vortex

Phase transitions may occur in quantum vortices.



Abelian Higgs model in (3+1) dimensions
<latexit sha1_base64="gxa+NLO2De2+MUwwQaaRl421vvg="></latexit>

S = →ωg

∑

x,µ<ω

cos (Fµω(x))→ ωH

∑

x,µ

cos (!µε(x)→ qAµ(x))

Fradkin-Schenker Phys. Rev. D 19, 3682 (’79) 
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such as

y(r) pIexp. I A„(x)dx„l'(0)
— I'(0, r&

O

Zp GAUGE THEORY

FIG. 1. The phase diagram for the Z2 model (d ~ 3).
The shaded region is where the bounds for analyticity
hold. the full curves represent lines of second-order
transitions given by (2.18). The broken lines are their
extrapolation into the diagram. Notice that the analytic-
ity region has a finite width at both the Higgs region
(X=) and confinement (P=O). Also note the curvature
of the phase transition lines. The phases are described
in the text.

inement Coulomb

ABEL IAN GAUGE THEORY

FIG. 2. Phase diagram for the Abelian model with
Higgs fields in the fundamental representation (8= 4).
The broken line emerging from the XF transition (E=) is a line of first-order transitions. The fu11 line
that emerges from the pure gauge transition {P=0) is a
line of transitions of the same order as the pure gauge
critical point. Notice the curvature of the lines. The
phases are described in the text.

from an approximate picture where one of the
fields is either decoupled or frozen. In fact, all
products of local operators that are candidates for
distinguishing the two regimes turn out to have
the same qualitative behavior in each (see Sec.
IIB). Furthermore, gauge- invariant operators

create a "mesonlike" state in the strong-coupling
regime, while in the Higgs regime they create a
state with a massive photon (this is clearest in the
unitary gauge). Thus the spectrum of the theory
seems to be created by the same kind of operators
in both regimes. For these and other reasons,
Susskind has speculated that these two phases
could be 'continuously connected. '
In general, if the Higgs fields are in the funda-

mental representation and all the gauge invari-
ance has been broken no phase boundary will exist
between the Higgs regime and confinement. Owing
to analyticity we expect that the spectrum of the
theory will evolve continuously from one regime
to the other. Higgs fields and confinement are
compatible phases. A theory can at the same time
be confining and exhibit some sort of dynamical
Higgs mechanism.
The pure gauge transition wiQ be shown to be

stable. The arguments are based on a study that
Wegner" presented for the Z, model but that
generalizes for any compact group and dimension
(higher than the critical). A line of transitions
emerging from the pure gauge critical point
(S =O,%=X,) is expected.
Generally, two phases will be present in this
case:
(a) a Higgs-confinement phase,
(b) a free-charge or Coulomb (continuous

groups) phase.
The two possible phase diagrams discussed

above are, naturally, prototypes. They may
change if, for instance, one of the pure transi-
tions does not exist (generally the pure gauge
transition). It is also possible to find more com-
plicated situations depending on the structure of
the Higgs sector.
Our analysis is done on a lattice with fixed,

finite lattice spacing. The question of the con-
tinuum limit of these theories is still an open
question. This problem has to be answered by
means of a renormalization-group analysis.
The paper is organized as follows. In Sec. II

me study the discrete Z, group. There we discuss
most of the consequences of having the Higgs field
in the fundamental representation since the calcu-
lations are much simpler. In Sec. III we consider
the U(1) model (Abelian Higgs model). The results
are generalized to non-Abelian groups [mainly
SU{X)]in Sec. IV, which also serves as a conclu-
sion. In the Appendix we sketch the proof of
analyticity referred to in the text.

q = 1

PHASE DIAGRAMS OF LATTICE GAUGE THEORIES WITH. . . 3698

(a) and (b), if d~ 4, we find two phases (Fig. 2).
For K large and P small there is a Coulomb phase.
Here the photon is massless and the forces are
long-ranged. As in the Z, model it is also possible
to find states in the spectrum that behave. like free
charges. In the Higgs-confinement phase the pho-
ton is massive and the forces short-ranged. The
only states in the spectrum are created by gauge-
invariant local operators.

S,[A„]= P . cos[qA„(r)](,u)
+K Q cos[E„„(r)].

(rs yV)

If P =~ the only configurations of A„ fields that
survive are those such that

(3.9)

B. Matter fields with multiple charge

'The situation is completely different if the
matter fields carry more than one unit of charge.
The introduction of the matter fields in some
higher representation generates a phase boundary
(i.e., singularities) between the Higgs and confine-
ment regimes that does not exist otherwise.
'The reason is that if the matter fields carry q

units of charge at the limit P=~ the system is
nontrivial. If we write the action in the unitary
gauge we get

ment of this 2, gauge charge. For K small, the
Wilson loop de.cays like the area. In this regime
we get confinement of static sources with the
fundamental charge. This phase exists for all
values of P and K small (see Fig. 3). On the other
hand, if K is large enough, the Wilson loop has a
perimeter law: Static fundamental sources are
not confined. "
'There is still the transition associated with the

massive or massless character of the photon.
This transition has already been discussed in the
model with q= 1 [Eq. (3.1)] and the same argu-
ments are valid for q 0 1.
In summary, when q41 three phases are ex-

pected to occur (d & 4) (Fig. 3):
(a) Confinement of static sources with the funda-

mental charge (K &K„all P). The spectrum is
made of gauge and Z, gauge charge neutral states.
'The gauge boson is massive.
(b) Higgs phase (k.&K„P&P,). The gauge boson

is still massive but Z, gauge cha, rge is not con-
fined. Static sources in the fundamental repre-
sentation are free, with an exponentially damped
force law.
(c) Coulomb phase (K&K„P&P,). The gauge

boson is massless and the static sources in the
fundamental representation are free with a
Coulombic force law. 'There is no confinement of

A„(r) = ",n„(r) integer.2n„(r)m
q

(3.10)
gauge charge. There are states in the spectrum
that represent free charges and have finite energy
(such as the Ising case).

Zp GAUGE THEOR Y

Higgs

0)
0F '\

Conf inement Coul omb

0
K

CO

ABEt I AN GAUGE THEORY

FIG. 3. Phase diagram of the Abelian Higgs inodel
for Higgs fields with two units of charge. The differ-
ence with Fig. 2 is that there is a phase with confine-
ment (in the Wilson sense) of static sources in the fun-
damental representation.

The constrained model (p = ~) is just a Z, gauge
theory. 'The Wilson loop for sources in the funda-
mental representation provides a test for confine-

C. Three dimensions

We have pointed out above that the argument on
the stability of Abelian gauge theory does not
apply in d = 3 where there is no transition at finite
coupling. Indeed, the stability argument shows
that the transition occurs at K, =~ to all orders
in P. We have no evidence for a Coulomb phase
in d = 3. Nevertheless, the analyticity arguments
apply here too. So, for charge-one Higgs field,
the Higgs and confining regimes still belong to the
same phase. The situation might be analogous to
the Z, model in d = 2. However, we cannot rule
out the existence of a ' pocket" of Coulomb phase.
Another possibility is a line of transitions ter-
minating at an interior point of the diagram. When
the Higgs fields carry q units of charge, we still
expect a phase boundary between the Higgs and
confining regimes to occur.

IV. CONCLUSIONS: NON-ABELIAN GROUPS

In the previous sections we have seen certain
general features of the phase diagram that are the
same for Z, and U(1) gauge groups. We want to
show now that these features persist for the more

q = 2
-1 form  

symmetry breaking
ℤ2

βH

βH

βg βg

Field strength Scalar field 
(phase dof)

Gauge field
Δμφa(x) = φa(x + ̂μ) − φa(x)



lattice modelU(1)gauge × U(1)global
cf. Motrunich, Senthil (’05)

Field strength Scalar field 
(phase dof)

Gauge field

βg

βH

“Confined”

Phase diagram

Coulomb

“Higgs”

Fradkin-Schenker

U(1)gauge :

U(1)global :

ℤ2F :

Symmetry

φ1 → φ1 + θ
φ2 → φ2 − θ
φ1 → φ2
φ2 → φ1

φ1 → φ1 − λ
φ2 → φ2 − λ
Aμ → Aμ + Δμλ

Δμφa(x) = φa(x + ̂μ) − φa(x)

<latexit sha1_base64="xeV07ORi7ehZIxTjZXRtidt1Xkw="></latexit>

S = →ωg

∑

x,µ<ω

cos (Fµω(x))→ ωH

∑

x,µ

∑

a=1,2

cos (!µεa(x) +Aµ(x))



cf. Motrunich, Senthil (’05)

Field strength Scalar field 
(phase dof)

Gauge field

βg

βH

“Confined”

Superfluid

Phase diagram

Coulomb

U(1)gauge :

U(1)global :

ℤ2F :

Symmetry

φ1 → φ1 + θ
φ2 → φ2 − θ
φ1 → φ2
φ2 → φ1

φ1 → φ1 − λ
φ2 → φ2 − λ
Aμ → Aμ + Δμλ Strong coupling Weak coupling

vortex transition？

Δμφa(x) = φa(x + ̂μ) − φa(x)

<latexit sha1_base64="xeV07ORi7ehZIxTjZXRtidt1Xkw="></latexit>

S = →ωg

∑

x,µ<ω

cos (Fµω(x))→ ωH

∑

x,µ

∑

a=1,2

cos (!µεa(x) +Aµ(x))

lattice modelU(1)gauge × U(1)global



Field strength Scalar field 
(phase dof)

Gauge field
Δμφa(x) = φa(x + ̂μ) − φa(x)

<latexit sha1_base64="xeV07ORi7ehZIxTjZXRtidt1Xkw="></latexit>

S = →ωg

∑

x,µ<ω

cos (Fµω(x))→ ωH

∑

x,µ

∑

a=1,2

cos (!µεa(x) +Aµ(x))

lattice modelU(1)gauge × U(1)global

Emergent symmetry at large  (SSB of )βH U(1)global

U(1)[2] ℤ[2]
2

Emergent 
Symmetry  
operator ei θ

2π ∫C (dφ1−dφ2) ei 1
2 ∫C (dφ1+dφ2)

YH, Kondo (’22)



Weak coupling βg ≫ 1Strong coupling βg ≪ 1

Distinguishable and φ1 φ2

 is spontaneously broken on  
the vortices

ℤ2F

Essential d.o.f. is φ1 − φ2
i.e., one d.o.f.

lattice modelU(1)gauge × U(1)globalExample: 

<latexit sha1_base64="GbPSgJdmeUs1tg30OHLEg9gPAe4="></latexit>

S = →ωg

∑

x,µ<ω

cos (Fµω(x))

<latexit sha1_base64="X9hLKEs8dC5PyBCWhWRjROmxw+I="></latexit>

→ωH

∑

x,µ

∑

a=1,2

cos (!µεa(x) +Aµ(x))

Integrating over gauge fields

Modified BesselI0(z) :

<latexit sha1_base64="XL2HVtYfhq4HN0Ba4jV1pkFzgSk="></latexit>

Se! = →
∑

x,µ

ln I0

[
2ωH cos

(
!µε1(x)→!µε2(x)

2

)]



Criterion of symmetry breaking:
When discrete symmetry is broken:  

twisting the boundary conditions by the symmetry  
causes the formation of domain walls

Example: Ising model
 broken phase ℤ2

↑↑↑↑↑↑ ↑↑↑↑↑↑

↑↑↑↑↑↑ ↑↑↑↑↑↑

domain wall

random configuration
 unbroken phase ℤ2

φ1
φ2

Weak coupling (  broken)ℤ2F

 modelU(1)gauge × U(1)global

φ1
φ2

randomized junctions

Strong coupling (  unbroken)ℤ2F



Numerical simulation 

At weak coupling  
long-range correlation 

Spontaneous symmetry  
breaking

Phase transition  
on a vortex0 2 4 6 8
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Correlation function of magnetic flux
vortex B(0) B(z)



Critical point
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Ising universality  class , 7/4ν = 1 γ =

βc = 1.853 ± 0.006

predicted in Motrunich, Senthil (’05)



Summary 

Codimension 1: transition on a domain wall
Codimension 2: transition  on a vortex
Codimension 3: Level crossing

Phase transitions on domain wall junctions are also possible

More generally, there can be phase transitions of 
various phase defects

We found the phase transition on a vortex
between strong and weak gauge couplings 

in superfluid phase



EFT on  model～Ising modelU(1) × U(1)
EFT of CFL phase ～  modelCP(2)
Ground state of  model  
Gapped phase, no flavor breaking 
⇒ continuously connects to the hadronic phase？

CP(2)

What happens if fermion d.o.f. is included？

Outlook


