Phase Transition of Vortices in Higgs-Confinement Continuity

Yoshimasa Hidaka (**YITP, Kyoto University**) **Collaboration with Dan Kondo (Univ. of Tokyo)**, **Tomoya Hayata (Keio Univ.)**

based on arXiv: 2411.03676

Strong coupling

●Motivation ●What we know about quark hadron continuity ●Phase transition on a vortices ●Summary and Outlook

The phase diagram of dense QCD 5

Motivation: QCD phase diagram

Fukushima, Hatsuda, Rept. Prog. Phys. 74 (2011) 014001

What we know For 3-flavor QCD : $G = SU(3)_f \times U(1)_B$ **●Superfluid(dilute phase)** Baryon pair condensation $\Delta = \langle \Lambda \Lambda \rangle \neq 0 \qquad \Lambda \sim u ds$ $SU(3)_f \times U(1)_B \rightarrow SU(3)_f$ 3 **●Color super conductor (dense phase)** "quark pair condensate" $(\Phi_L)^i_a = \epsilon^{ijk} \epsilon_{abc} \langle (q_L)^b_i (Cq_L)^c_k \rangle = - \epsilon^{ijk} \epsilon_{abc} \langle (q_R)^b_i (Cq_R)^c_k \rangle$ $a^i = \epsilon^{ijk} \epsilon_{abc} \langle (q_L)^b_j (C q_L)^c_k$ $= - e^{ijk}$ *b* ⟩ ϵ_{abc} \langle (q_R) $\frac{b}{j}(Cq_R)$ *k* $SU(3)_f \times U(1)_B \rightarrow SU(3)_f$

-
-
-
-

Hadronic superfluid Color flavor locked phase (CFL phase)

Symmetry breaking patter is the same 㱺**Quark hadron continuity**

Quark hadron continuity

Tamagaki ('70), Hoffberg et al ('70) \blacksquare Alford, Rajagopal, Wilczek ('99)

cf. Hatsuda, Tachibana, Yamamoto, Baym ('06) **Baryons** 㱺 **Quarks Vector meson** ^㱺 **Gluons Excitations**

Can the two phases be distinguished for topological reasons?

SPT phase, topological ordered phase, …

Topological ordered phase Spontaneously broken ≈**generalized (discrete) global symmetries**

dimensional topological *d* **object labeled by** *g* ∈ *G*

Quantum field theory(QFT) in (d+1) dimensions

ϕ

-dimensional object 0 **labeled by representation of** *G*

Ordinary global symmetry of Generalized global symmetry Gaiotto, Kapustin, Seiberg, Willett ('14)

Symmetry operator Charged object

 U_g

Group law

 U_g *U_{g'} U_{gg'}*

 $\frac{1}{2}$

 $g, g' \in G$ $gg' \in G$

 U_g

charged object is surrounded by *Ug* 㱺**symmetry transformation**

dimensional topological *d* − *p* **object labeled by** *g* ∈ *G*

U_g **Generalized global symmetry** *p* **form symmetry** *G* **QFT in (d+1) dimension Gaiotto, Kapustin, Seiberg, Willett ('14)**

-dimensional object *p* **labeled by representation of** *G*

Charged object: p-dimensional

= **group law** $g, g' \in G$ $gg' \in G$

Symmetry generator: (d-p)-dimensional

 U_g U_g'

Ugg′

p **form symmetry** *G* **Generalized global symmetry QFT in (d+1) dimension Gaiotto, Kapustin, Seiberg, Willett ('14)**

= *Vg* **representaion**

Example: U(1) gauge theory

Surface operators Electric: *Q^e* = 1 *e*2 Z *M*(2) $\star F$

Magnetic: *Q^m* = 1 2π z
Z *M*(2) $H = \exp\left[i\oint \vec{A}\right]$ **Magnetic:** $Q_m = \frac{1}{2} \int F$

Charge

i
I

 $W = \exp\left[i\right]$ I $M^{(1)}$ *A*

i
India
I $M^{(1)}$ *A* $\widetilde{A}% _{G}$

Wilson ('t Hooft) loop

Charged object

i

U(1) [1] *M*

U(1) [1] *E*

Gaiotto, Kapustin, Seiberg, Willett ('14)

Quantum electrodynamics There are $U(1)^{[1]}_{M}$ magnetic 1-form symmetry *M*

Superconductor SSB $U(1)^{[1]}_M$ **Unbroken** $U(1)$ [1] *M* **Unbroken** $\mathbb{Z}_2^{[1]} \times \mathbb{Z}_2^{[2]}$ **Emergent symmetry (SSB)** Topological order $\mathbb{Z}_2^{[1]}$ 2^{11} : cooper pair has charge 2 $\mathbb{Z}_2^{[2]}$: π magnetic flux inside of vortex

Vacuum *U*(1) [1] **Emergent symmetry** *U*(1) [1] *E*

Photons are Nambu-Goldstone modes

Thought experiment : rotating neutron stars

CFL phase

Hadronic

superfluid

Quantum vortex

Consider continuity of vortices

●Circulation

●Emergent symmetry

Hadronic superfluid phase di-baryons condense 8 B

 $SU(3)_f \times U(1)_B \rightarrow SU(3)_f$ **Symmetry breaking pattern**

- $\Delta = \langle \Lambda \Lambda \rangle \neq 0 \quad \Lambda \sim uds$
	-
	-
- **Topological excitation: U(1) vortex** $\pi_1(U(1)_B) = \mathbb{Z}$
- $\phi = \Delta f(r)e^{i\theta}$ $\left[\frac{d\theta}{2\pi} \in \mathbb{Z} \mid f \to 0 \mid f \to 1\right]$ $r \to 0$ $r \to \infty$ ∈ ℤ

Quantum number in Hadronic superfluid phase Global $U(1)_R$ symmetry is broken **U(1) vortex: topological defect** $\Delta e^{i\theta}$

 $\nu_{B} = \int \frac{1}{2\pi}$: Winding number *dθ* 2*π*

 $2\mu_B$: Baryon chemical potential of order parameter

Circulation: [∫] *^v* ⁼ [∫] *dθ* 2*μ^B* $=$ $2\pi\nu_B$ 2*μ^B*

 (Φ_R) *i a* $=$ ε ^{ijk} ϵ_{abc} \langle (q_R) *b* $\frac{b}{j}(Cq_R)$ $(\Phi_L)^i_a = \epsilon^{ijk} \epsilon_{abc} \langle (q_L)^b_i (Cq_L)^c_k \rangle$ $(\Phi_R)^i_a = \epsilon^{ijk} \epsilon_{abc} \langle (q_R)^b_i (Cq_R)^c_k \rangle$ $=$ ε ^{ijk} ϵ_{abc} $\langle (q_L) \rangle$ *b* $\frac{b(Cq_L)}{q}$ *k* ⟩

 Φ := Φ _L = - Φ _R =

 Δ_{CFL} 0 0 $0 \quad \Delta_{\rm CFL} \quad 0$ $0 \t\Delta_{\rm CFL}$

Color-flavor locking phase *u μq u d s u s d* **quark pair**

U(1) vortex

Non-abelian CFL vortex

Balachandran, Digal, Matsuura, PRD73, 074009 (2006)

 $\Phi:=\Delta_{\text{CFL}}$ $e^{i\theta} f(r)$ 0 0 0 *g*(*r*) 0 $0 \t 0 \t g(r)$

,

1

3

 $\frac{\epsilon_{ij}x^j}{g_s^2r^2}(1-h(r))\text{diag}\left(-\frac{2}{3}\right)$

 $A_i = -\frac{\epsilon_{ij} x^j}{a^2 x^2}$

,

1

³) **both superfluidity and superconductivity**

Numerical Simulation

Alford, Mallavarapu, Vachaspati, Win

Circulation 2*π νB* 2*μ^B ν*_{*B*}: Winding number **U(1) vortex in Hadronic phase** $\langle W \rangle = |\langle W \rangle|$

Circulation 2*π* **U(1) vortex in CFL** $\overline{\langle \, W \rangle \equiv |\, \langle \, W \rangle \, |}$

νA 2*μ^q* = 2*π* 3*ν^A* 2*μ^B*

Circulation 2*πνA*/3 2*μ^q* = 2*π* 2*μ^B*

νA

 $\langle W \rangle = e^i$ $\frac{1}{3}$ | $\langle W \rangle$ | Cherman, Sen, Yaffe, PRD 100, 034015 (2019)

Non-abelian vortex in CFL

2*πνA*

Alford, Baym, Fukushima, Hatsuda, Tachibana ('19)

CFL vortex: emergent ℤ **symmetry** [2]

Topological ordered phase? 3 **However, it is not unbroken, i.e. not topological order**

Hirono, Tanizaki ('19)

Hayashi ('23)

What is the fate of $e^{\frac{-\pi}{3}l}$? 2*π* $rac{2\pi}{3}$ *i* **The magnetic flux will not penetrate through the vortices in the hadronic phase** 㱺 **This allow us to distinguish the phases.** Cherman, Jacobson, Sen, Yaffe ('20), ('24)

Magnetic flux may penetrate through the vortices in the hadronic phase or dissipate during the transition.

●Phase transition on a vortices ●Summary

Phase transition on a topological defect, while the bulk remains continuous? Effective theory on a topological defect= a lower-dimensional field theory may exhibit phase transition Our answer is YES! Domain wall vortex Phase transitions may occur in quantum vortices.

Fradkin-Schenker Phys. Rev. D 19, 3682 ('79) IIB). Furthermore, gauge- invariant operators. Kev. D 19, 3082 (*1* mental representation provides a test for confine-

Abelian Higgs model in (3+1) dimensions $S = -\beta_g$ 1 $x, \mu < \nu$ $\cos(F_{\mu\nu}(x)) - \beta_H$ 1 x,μ $\epsilon - \beta_g \sum \cos(F_{\mu\nu}(x)) - \beta_H \sum \cos(\Delta_\mu \varphi(x) - qA_\mu(x))$ in the text. $x,\mu\!<\!\nu$ Field strength products of local operators that are candidates for compatible phases. A theory can at the same time be confining and exhibit some sort of dynamical Higgs mechanism. The pure gauge transition wi \mathcal{L} is the pure gauge transition with \mathcal{L} be shown to be shown stable. The arguments are based on a study that $\sum_{i} \cos(\Delta_{ii} \varphi(x) - qA_{ii})$ μ realizes for any compact group and dimensionalizes for μ $x₁$, $y₂$, $z₂$ and $z₁$ and $z₂$ $e^{i\theta}$ experience the second seco S, [A] **HU) QIINGANSION** $I = \frac{1}{2} \int_{0}^{2\pi} \$ s_{max}/Λ ω_{max} $\cos\left(\Delta_{\mu}\varphi(x)\right) -$
Scalar field C (3.10) $\Delta_{\mu}\varphi_{a}(x) = \varphi_{a}(x + \hat{\mu}) - \varphi_{a}(x)$ Field strength x,μ **Scalar field (phase dof) Gauge field**

 $G_{\rm eff}$ is two phases will be present in this present in thi

 $S = -\beta_g$ 1 $x, \mu < \nu$

 $U(1)$ _{gauge}: $\varphi_2 \rightarrow \varphi_2 - \lambda$ $U(1)_{\text{global}}$: ℤ2*^F* : **Symmetry** $\pmb{\varphi}_1 \rightarrow \pmb{\varphi}_1 + \pmb{\theta}$ $\varphi_2 \rightarrow \varphi_2 - \theta$ $\varphi_1 \rightarrow \varphi_2$ $\varphi_2 \rightarrow \varphi_1$ $\boxed{\varphi_1 \to \varphi_1 - \lambda}$ $A_\mu \rightarrow A_\mu + \Delta_\mu \lambda$

 $S = -\beta_g$ 1 $\overline{x}, \mu < \nu$ $cos(F_{\mu\nu}(x)) - \beta_H$

 $U(1)$ _{gauge}: $\varphi_2 \rightarrow \varphi_2 - \lambda$ $U(1)_{\text{global}}$: ℤ2*^F* : **Symmetry** $\pmb{\varphi}_1 \rightarrow \pmb{\varphi}_1 + \pmb{\theta}$ $\varphi_2 \rightarrow \varphi_2 - \theta$ $\varphi_1 \rightarrow \varphi_2$ $\varphi_2 \rightarrow \varphi_1$ $\phi_1 \rightarrow \phi_1 - \lambda$

cf. Motrunich, Senthil ('05) Field strength x, μ $a=1,2$ **Scalar field (phase dof) Gauge field 1** *x,µ a*=1*,*2 $cos (\Delta_{\mu} \varphi_a(x) + A_{\mu}(x))$ $U(1)_{gauge} \times U(1)_{global}$ lattice model

Phase diagram

 $x, \mu < \nu$ Field strength x, μ $a=1,2$ Scalar field $S = -\beta_g$ 1 $cos(F_{\mu\nu}(x)) - \beta_H$

Gauge field $\Delta_{\mu} \varphi_a(x) = \varphi_a(x + \hat{\mu}) - \varphi_a(x)$

(phase dof)

 $\mathbb{Z}_2^{[2]}$

 $e^{i\frac{1}{2}\int_C (d\varphi_1 + d\varphi_2)}$

Emergent symmetry at large β_H **(SSB of** $U(1)_{\text{global}}$ **) YH, Kondo ('22)**

Emergent $U(1)^{[2]}$ $\mathbb{Z}_2^{[2]}$ **Symmetry operator** $e^{i\frac{\theta}{2\pi}\int_C (d\varphi_1 - d\varphi_2)}$

$U(1)_{gauge} \times U(1)_{global}$ lattice model

1 $cos (\Delta_{\mu} \varphi_a(x) + A_{\mu}(x))$

Distinguishable *φ*1**and** *φ*² \mathbb{Z}_{2F} is spontaneously broken on **the vortices**

Essential d.o.f. is $\varphi_1 - \varphi_2$ **i.e., one d.o.f. Integrating over gauge fields** $I_0(z)$: Modified Bessel $S_{\text{eff}} = \sum$ x,μ $\ln I_0$ $\int_{2\beta_H}\cos\left(\frac{\Delta_{\mu}\varphi_1(x)-\Delta_{\mu}\varphi_2(x)}{\Omega}\right)$ 2

Criterion of symmetry breaking:

When discrete symmetry is broken: twisting the boundary conditions by the symmetry causes the formation of domain walls

*φ*1 φ_2 **Weak coupling** $(\mathbb{Z}_{2F}$ broken) $U(1)_{gauge} \times U(1)_{global}$ model

 $\overline{\text{Strong coupling}~(\mathbb{Z}_{2F} \text{ unbroken})}$ **randomized junctions** TOODOOO $\begin{matrix} 0 & 0 \end{matrix}$

Example: Ising model ℤ **broken phase** ² ↑↑↑↑↑↑ ↑↑↑↑↑↑ ↑ an
↑ | ↑↑ ነ
↑
↑ ↑ ↑ ↑ ↑ ↑↑↑ **domain wall random configuration** ℤ **unbroken phase** ²

At weak coupling long-range correlation

Spontaneous symmetry breaking

Phase transition

Correlation function of magnetic flux

Critical point

Ising universality class *ν* = 1**,** *γ* = **7/4**

predicted in Motrunich, Senthil ('05)

Codimension 1: transition on a domain wall Codimension 2: transition on a vortex

- - **Codimension 3: Level crossing**

Phase transitions on domain wall junctions are also possible

Summary We found the phase transition on a vortex between strong and weak gauge couplings in superfluid phase

More generally, there can be phase transitions of various phase defects

EFT on *U*(1) × *U*(1) **model**~**Ising model EFT** of CFL phase $\sim CP(2)$ model

Ground state of $CP(2)$ model **Gapped phase, no flavor breaking** 㱺 **continuously connects to the hadronic phase**? **What happens if fermion d.o.f. is included**?

Outlook