Phase diagram of QCD matter with magnetic field: domain-wall Skyrmion chain in chiral soliton lattice

- Kentaro Nishimura (Hiroshima University)
- In a collaboration with Minoru Eto (Yamagata) and Muneto Nitta (Keio)
 - Symmetry and Effective Field Theory of Quantum Matter Niigata University, 2024/11/26
 - JHEP 12 (2023) 032

Introduction

Chiral soliton lattice

Domain wall Skyrmion Eto, KN and Nitta, JHEP 12 (2023) 032

Outline

Son and Stephanov (2008); Brauner and Yamamoto (2017)

Baryon

Elementary Degrees of freedom = Quarks (up, down)

• Baryon = Particle composed of quarks

 $\epsilon^{a_1 a_2 a_3} q_{a_1}^{f_1} q_{a_2}^{f_2} q_{a_3}^{f_3}$

Meson

• Degrees of freedom of the low-energy dynamics = Pions

 $\Sigma(x) =$

Nambu-Goldstone (NG) mode of spontaneous chiral symmetry breaking

 $SU(2)_R \times SU(2)_L \rightarrow SU(2)_V$

$$\exp\left(\frac{\mathrm{i}\pi_a\tau_a}{f_\pi}\right)$$

Skyrmions

Can the baryons be made by pions (rather than quarks)?

Topological number = Baryons

$$N_{\rm B} = \frac{1}{24\pi^2} \int \mathrm{d}^3 x \, \epsilon^{ijk} \mathrm{tr} (\Sigma \partial_i \Sigma^\dagger \Sigma \partial_j \Sigma^\dagger \Sigma \partial_k \Sigma \nabla_k \Sigma \partial_k \Sigma \nabla_k \Sigma \partial_k \Sigma \nabla_k \Sigma \partial_k \Sigma \partial_$$

- How many times R³ surrounds the configuration space of the pions S³.

Solitonic phase

- Generally, topological solitons are energetically unstable...
- You can find the case where solitons appear in ground states!

- Other examples are Baby Skyrmion crystals and Abrikosov lattice …

QCD phase diagram

Г Temperature

Fukushima and Hatsuda (2008)

Instability of inhomogeneous state

W/SO(3) rotational symmetry

• Please imagine a field $\phi(z)$ depends on z and exhibits periodic behavior.

Hidaka, Kamikado, Kanazawa and Noumi (2015) Lee, Nakano, Tsue, Tatsumi and Friman (2015) 8

Instability of inhomogeneous state

• Please imagine a field $\phi(z)$ depends on z and exhibits periodic behavior.

W/o SO(3) rotational symmetry

Determine a special direction!

Brauner and Yamamoto (2016); Brauner and Kadam (2017)

What I want to discuss today How is the phase diagram modified by B and μ_B ?

- Consider zero-temperature case.
- I will use the chiral perturbation theory.
- Consider the finite-B modification in a region with a relatively small $\mu_{\rm B}$.

Since pions do not carry baryon number, nothing seems to happen even if μ_B is considered.

Skyrmion plays an important role to determine the phase structure.

What I want to discuss today

Introduction

Chiral soliton lattice

Domain wall Skyrmion Eto, KN and Nitta, JHEP 12 (2023) 032

Outline

Son and Stephanov (2008); Brauner and Yamamoto (2017)

Chiral perturbation theory

• Order parameter is the chiral condensate: $\langle \bar{q}q \rangle = |\langle \bar{q}q \rangle|\Sigma$

• Nambu-Goldstone boson: $\Sigma = \exp(i d)$

• Effective Lagrangian: $\mathcal{L}_{ChPT} = \frac{f_{\pi}^2}{4} tr$

$$\sigma_a \phi_a), \quad \phi_a \equiv \pi_a / f_\pi$$

$$\left(D_{\mu}\Sigma D^{\mu}\Sigma^{\dagger}\right) - \frac{f_{\pi}^2 m_{\pi}^2}{4} \left(2 - \Sigma - \Sigma^{\dagger}\right)$$

 $D_{\mu}\Sigma = \partial_{\mu}\Sigma + iA_{\mu}[Q,\Sigma], \quad Q = \operatorname{diag}(2/3,-1/3)$

ChPT w/ topological terms

• Baryon current couples to $U(1)_B$ gauge field (minimal coupling):

$$\mathcal{L}_{\mathrm{B}} = -A_{\mathrm{B}}^{\mu} j_{\mathrm{B}\mu} , \quad A_{\mathrm{B}}^{\mu} = (\mu_{\mathrm{B}}, \mathbf{0})$$

Skyrimon charge U(1)_{em} gauged part

Son and Stephanov (2008); Goldstone and Wilczek (1981); Witten (1983)

• "trial and error" $U(1)_{em}$ gauging while preserving baryon number conservation.

$$\{Q(L_{\beta} + R_{\beta})\}$$

$$L_{\mu} \equiv \Sigma \partial_{\mu} \Sigma^{\dagger}, R_{\mu} \equiv \partial_{\mu} \Sigma^{\dagger} \Sigma$$

$$Q = \text{diag}(2/3, -1/3)$$

sine-Gordon theory with the topological term

- I first ignore π_{\pm} : $\Sigma = e^{i\phi_3\tau_3}$
- Reduced Hamiltonian (B is oriented in z-direction) :
- The last term stems from the 2nd term of the skyrmion term.

$$\mathcal{L}_{\rm B} = -\mu_{\rm B} \frac{\epsilon^{0ijk}}{24\pi^2} \mathrm{tr} \{ L_{i} k \}$$

- $B \neq 0 \rightarrow$ Finite 1 st derivative term \rightarrow Favor ϕ inhomogenity
- What is a ground state at finite B?

15 Brauner and Yamamoto (2017)

Chiral Soliton Lattice

 $B\hat{z}$

• EOM : $\partial_z^2 \phi_3 = m_\pi^2 \sin \phi_3$ $\phi_3(-\infty) = 0, \ \phi_3(\infty) = 2\pi$

• Energy:
$$E = \int_{-\infty}^{\infty} \mathrm{d}z \,\mathcal{H} = 8m_{\pi}^2 f_{\pi} - \frac{e\mu_{\mathrm{B}}B}{2\pi}$$

• Critical B:
$$B_{\rm CSL} = \frac{16\pi m_{\pi} f_{\pi}^2}{e\mu_{\rm B}}$$

$\pi_{0} \operatorname{DW}: \phi_{3} = 4 \tan^{-1} \mathrm{e}^{m_{\pi} z}$

Chiral Soliton Lattice

• EOM : $\partial_z^2 \phi_3 = m_\pi^2 \sin \phi_3$ $\phi_3(-\infty) = 0, \ \phi_3(\infty) = 2\pi$

• Energy:
$$E = \int_{-\infty}^{\infty} \mathrm{d}z \,\mathcal{H} = 8m_{\pi}^2 f_{\pi} - \frac{e\mu_{\mathrm{B}}B}{2\pi}$$

• Critical B:
$$B_{\rm CSL} = \frac{16\pi m_{\pi} f_{\pi}^2}{e\mu_{\rm B}}$$

- Pack many DWs in ground state!
- Impossible to pack due to the repulsive force.

Dautry and Nyman (1979); Hatsuda (1986); Son and Stephanov (2008); Nishiyama, Karasawa and Tatsumi (2015); Brauner and Yamamoto (2017)

- EOM = Pendulum: $\partial_z^2 \phi_3 = m_\pi^2 \sin \phi_3$ $\phi_3(0) = \pi, \ \phi_3(\ell) = 2\pi$
- Analytic solution : $\bar{\phi} = 2 \operatorname{am} \left(\frac{z}{\kappa}, \kappa \right) + \pi$

 \mathcal{K} : Elliptic modulus

• Period : $\phi(z+\ell) = \phi(z) + 2\pi$

$$\ell = 2\kappa K(\kappa)$$

 $K(\kappa)$: The complete elliptic integral of the first kind

Minimization of the total energy

• Minimizing the total energy gives us the optimal κ .

$$\mathcal{E}_{\text{tot}} = \int_0^\ell dz \, \left[\frac{f_\pi^2}{2} (\partial_z \phi)^2 + f_\pi^2 m_\pi^2 (1 - \cos \phi) + \frac{f_\pi^2}{2} (\partial_z \phi)^2 + \frac{f_\pi^2}{2} m_\pi^2 (1 - \cos \phi) + \frac{f_\pi^2}{2} m_\pi^2 m_\pi^2 (1 - \cos \phi) + \frac{f_\pi^2}{2} m_\pi^2 m_\pi^$$

positive

Energy minimization condition :

$$\frac{\mathrm{d}}{\mathrm{d}k} \left(\frac{\mathcal{E}_{\mathrm{tot}}}{\ell} \right) \to \frac{E(\kappa)}{\kappa} = \frac{\mu_{\mathrm{B}}B}{16\pi m_{\pi} f_{\pi}^2}$$

 $E(\kappa)$: The complete elliptic integral of the 2nd kind

- Critical magnetic field : $B_{\rm CSL} = 16\pi f_{\pi}^2 m_{\pi}/\mu_{\rm B}$
- The energy density with the minimization condition is smaller than that of $\phi_3=0$.

Brauner and Yamamoto (2017) $-\frac{\mu_{\rm B}}{4\pi^2}B\partial_z\phi$ negative! $\phi(\ell) - \phi(0) = 2\pi$ $E(\kappa)/\kappa$

Ŏ.0

0.2

0.4

Optimal κ ! κ

0.6

0.8

1.0

Fluctuations of π_{\pm}

- Fluctuation around the CSL background :
- CSL is unstable against fluctuations of π_{\pm} above $B^{\pi\pm}BEC$

$$k = k(B_{\rm BEC}^{\pi\pm}) - \dots$$

- Derive the effective action up to the 2nd of the fluctuations from the CSL
- Calculate the dispersion relation ω

$$_{\rm C} = \frac{m_\pi^2}{k^2} \left(2 - k^2 + 2\sqrt{1 - k^2 + k^4} \right)$$

- When $\omega^2 < 0$, the fluctuation is tachyonic and CSL becomes unstable. Brauner and Yamamoto (2017)

Brauner and Yamamoto (2017)

Introduction

Chiral soliton lattice

• Domain wall Skyrmion Eto, KN and Nitta, JHEP 12 (2023) 032

Outline

Son and Stephanov (2008); Brauner and Yamamoto (2017)

• The baryon current contains the Skyrmion charge, which is O(p²).

$$\mathcal{L}_{\mathrm{B}} = -\mu_{\mathrm{B}} \frac{\epsilon^{0ijk}}{24\pi^2} \operatorname{tr}\{L_i L_j L_k - \operatorname{3ie}\partial_i \left[A_j Q(L_k + R_k)\right]\}$$

- In the unstable region, π_{\pm} is important element.
- The Skyrmion charge term becomes finite only when π_{\pm} is considered.
- When Σ has Skymion number, 1st term decreases the energy density!

Skyrmion : π_3 (S³)

What we overlooked

$\mu_{\rm B} B \partial_z \phi_3 \subset \mathcal{L}_{\rm B}$

Baby Skyrmion : $\pi_2(S^2)$

become stable at finite μ_B !

Non-Abelian soliton

• The single soliton: $\Sigma_0 = e^{i\sigma_3\theta}, \ \theta = 4tan^{-1}e^{m_{\pi}z}$

More general solution :

$$\Sigma = g\Sigma_0 g^{\dagger} = \exp(\mathrm{i}\theta g\tau_3 g^{\dagger})$$

• SSB of SU(2)_V \rightarrow U(1)

– Σ_0 is invariant under $g = \mathrm{e}^{\mathrm{i} au_3 heta}$

S² moduli on the domain wall

- The collective coordinate :

Nitta (2015); Eto and Nitta (2015)

$$\phi \in \mathbb{C}^2, \qquad \phi^{\dagger} \phi =$$

 $g\sigma_3 g^{\dagger} = 2\phi \phi^{\dagger} - 1$

EFT of the DW

- Construct DW world effective theory via the moduli approximation.
- This EFT identifies S^2 moduli ϕ as dof.
- Promote the moduli to a field on 2+1 dim world volume

$$\phi \to \phi(x^{\alpha}), \quad (\alpha = 0, 1, 2)$$

$$\Sigma = \exp(2i\theta\phi\phi^{\dagger})u^{-i\chi_3^{\rm CSL}} \quad \chi_3^{\rm CSL} =$$

- Effective Lagrangian : $\mathcal{L}_{EFT} = \mathcal{L}_{const} + \mathcal{L}_{kin} + \mathcal{L}_{topo}$ Eto, KN and Nitta, JHEP 12 (2023) 032
- Kinetic term : $\mathcal{L}_{kin} = \mathcal{C}(\kappa)[(\phi^{\dagger}D_{\alpha}\phi)^{2} + D^{\alpha}\phi^{\dagger}D_{\alpha}\phi]$
- Topological terms : $\mathcal{L}_{ ext{topo}} = -2\mu_{ ext{B}}q$ -
- The red term stabilizes the configuration with finite k!

 $k = \int \mathrm{d}^2 x \, q$ $= \frac{1}{4\pi} \int \boldsymbol{n} \cdot \left(\frac{\partial \boldsymbol{n}}{\partial x} \mathrm{d}x \times \frac{\partial \boldsymbol{n}}{\partial y} \mathrm{d}y \right)$ $\in \mathbb{Z}$

EFT for S² moduli

$$+ \frac{e\mu_{\rm B}}{2\pi} \epsilon^{03jk} \partial_j [A_k(1-n_3)] \qquad \begin{array}{c} \text{O(3) nonlinear sigma m} \\ n_a \equiv \phi^\dagger \sigma_a \phi \quad |\boldsymbol{n}| = 0 \\ \end{array}$$

 $\pi_2(S^2)$ topological charge (counting how many times xy plane covers S² moduli) –

Polyakov and Belavin (1975)

Bogomol'nyi bound

Baby Skyrmion naturally appears when minimizing the Hamiltonian.

$$\mathcal{H}_{\rm DW} = \frac{\mathcal{C}(\kappa)}{4} \partial_i \boldsymbol{n} \cdot \partial_i \boldsymbol{n} + 2\mu_{\rm B}q - \frac{e\mu_{\rm B}}{2\pi} \epsilon^{03jk} \partial_j [A_k(1-n_3)]$$

Completing the square of the kinetic term is useful!

$$(\partial_i n)^2 = \frac{1}{2} \frac{(\partial_i n \pm \epsilon_{ij} n \times \partial_j n)^2 \pm 8\pi q}{-0} \xrightarrow{\rightarrow \mathsf{BPS} \text{ equation}} \xrightarrow{\rightarrow \mathsf{Baby Skyrmin}}$$

Total energy :

$$E_{\rm DW} \ge 2\pi \mathcal{C}(\kappa)|k| + 2\mu_{\rm B}k - \frac{e\mu_{\rm B}}{2\pi} \int d^2x \epsilon^{03jk} \partial_j [A_k(1-n_3)]$$

The total energy is negative $\mu > \mu_c$, and baby Some constraints on the lump Skyrmion appears in the ground₈state! Eto, KN and Nitta, JHEP 12 (2023) 032

 \rightarrow BPS equation \rightarrow Baby Skyrmion!

• In order to minimize E_{DWSK} , $b_{k-1}=0$.

Constraint on baby Skyrmion

• **k** anti-Baby Skyrmion solution: $n_3 = \frac{1 - |f|^2}{1 + |f|^2}$, $f = \frac{b_{k-1}\bar{w}^{k-1} + \dots + b_0}{\bar{w}^k + a_{k-1}\bar{w}^{k-1} + \dots + a_0}$

• Edwsk, for the k anti-baby Skyrmion: $E_{\text{DWSk}} = 2\pi C(\kappa)|k| - 2\mu_{\text{B}}|k| + e\mu_{\text{B}}B|b_{k-1}|^2$

Can it be negative here?

• Critical baryon chemical potential: $\mu_{
m B} \ge \mu_{
m c} = \pi C(\kappa)$ Eto, KN and Nitta, JHEP 12 (2023) 032

Summary

• At B>B_c, the parallel stack of π_0 DWs is energetically stable.

• At $\mu > \mu_c$, baby Skyrmion appears on π_0 DWs.

We have to include the minimal coupling of pions to baryons via Skyrmions.

- DWSk in QCD-like theory (two-color QCD)
- Two-color QCD with finite baryon chemical potential and magnetic field has no sign problem.
- CSL is QCD-like theory has been considered. Brauner, Filions and Kolesova (2019)

- DWSk in lattice gauge theory
- Monte-Carlo simulation
- Strong-coupling expansion for calculating free energy See also Nishida (2004) and Nishida, Fukushima and Hatsuda (2004)

Future direction

Thank you for your attention!

Back up

Elliptic integrals and functions

The elliptic integral of the first kind

$$K(k) = \int_0^{\pi/2} \mathrm{d}\theta \, \frac{1}{\sqrt{1 - k^2 \sin^2 \theta}} \simeq \ln \frac{4}{k'^2} + \frac{k'^2}{4} \left(\ln \frac{4}{k'^2} - 1 \right)$$

The elliptic integral of the second kind :

$$E(k) = \int_0^{\pi/2} \mathrm{d}\theta \sqrt{1 - k^2 \sin^2 \theta} \simeq 1 + \frac{k'^2}{2} \left(\ln \frac{4}{k'^2} - \frac{1}{2} \right)$$

1:
$$k' = \sqrt{1 - k^2}$$

EOM of the fluctuations

Fluctuation around the CSL background :

$$\omega^2 \pi_+ = \left[-\partial_x^2 + B^2 \left(x - \frac{p_y}{B} \right)^2 \right] \pi_+ + \left(\partial_z^2 + 2i\partial_z + m_\pi^2 e^{i\phi_3} \right) \pi_+$$

Giving the Landau quantization

• Chiral limit : $\omega^2 = p_z^2 - \frac{\mu_B B p_z}{2\pi^2 f_{\pi}^2} + (2n+1)B$

Deducing the energy!

• $\omega^2 < 0$: $B_{\pi_{\pm}} = \frac{16\pi^4 f_{\pi}^2}{\mu_B^2}$

Brauner and Yamamoto (2017)