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Message

Non-invertible symmetries can be applicable to dynamics.



Overview
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® Axion electrodynamics in (3 4 1) dimensions exhibits instability
in the presence of background time dependent axion O:¢ or electric field.
® Generalized chiral instabilities: universal mechanism of these instabilities

® |nstabilities tend to be weakened.
® B & V¢ with linking number are generated.

® Stability of generated fields can be stable due to non-invertible symmetries.
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Gapless modes = modes without energy (mass) gap

® Dispersion relation: w =0 for k =0 .
® Long wave excitation by infinitesimal energy — Dominating infrared (IR) physics
® Characterizing phase of matter: gapless phase

® Ubiquitous in physics: photon, phonon, Nambu-Goldstone bosons

The Lorentz symmetry is important for gapless modes.
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Gapless modes and Lorentz symmetry
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With Lorentz symmetry:
® |Linear dispersion OJ2 = k2 (I neglect higher order terms in this talk)
Without Lorentz symmetry (e.g., explicit breaking by background fields)

— possibility of corrections in IR

2

® 1st order of w: w? = aw + k% — gapped mode w = o + ékQ

® 1st order of k: w? = Bk + k2 — unstable mode
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Unstable mode
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® Dispersion relation w = \/k? + Bk

® For 3 < 0, there is instability w = i/|Bk| — k2 in finite IR region 0 < |k| < ||

. . _ L2
(Tachyonic mode ¢ ~ tWtt+ike o o |BkI—k=t

)

Such an instability arises in realistic systems!
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Axion electrodynamics = axion ¢ + photon a, + topological coupling wic

[ Action (massless axion & photon) ]

2 1 1 .
S = —/d4a: (%(%d)@“(ﬁ-i— @FHVFMV + @QSF;WF’W)

v: decay constant, e: coupling constant (| sometimes omit them)
® Axion ¢: pseudo-scalar field, photon A,: U(1) gauge field with Dirac quantization condition
Features
1. Simple and ubiquitous in modern physics
QCD axion, inflaton, moduli from string theory, 70 meson, quasi-particle excitation,...
2. Cubic topological coupling qu,“,F"“’: determined by chiral anomaly in UV
Toy model of 10d, 11d supergravities ~ C3 A Fy A Fy [Townsend '93; Harvey & Ruchayskiy '00]

Cubic topological coupling d)Fw,I:_'*“’ leads to non-trivial effects
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Four effects due to topological coupling
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® Induced current: V x B — O E = ﬁ(Batqﬁ — ExV¢)
Chiral magnetic effect [Fukushima, et al.'08]; anomalous Hall effect [sikivie '84]
® Induced charge: V- E = —ﬁB -V [sikivie '84]

® Photon to axion: (97 —V?)¢ = Iz E- B

Background axion velocity 0¢¢p = const — instability of photon
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Chiral instability

Review based on Akamatsu & Yamamoto '13 and so on



Ch | raI Insta bl [ Ity [Carroll, et al. '89; Joyce & Shaposhnikov '97; Anber & Sorbo '07; Akamatsu & Yamamoto '13]
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® Ampere law V x B = M%Batqﬁ

® Background 9:¢ # 0 — j o< B amplifies magnetic field

Dispersion relation?
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Dispersion relation

C =09
For k = (k,0,0), EOM is

W=k | ay | =iC —k az
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Instability in IR region k < C

® Tachyonic mode w = iv/Ck — k2
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Is the instability pathological?
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|nStabI|Ity tends to be Weakened (linear analysis)

B

Q - E-B <O

® Faraday law: VX E = —-0:B

Ot decreases (linear analysis)

® EOM of axion: Bt2¢>= #E-B <0

Generated magnetic field is stable
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Generation of stable magnetic field

B

Q - E-B<O

® EOM of axion 9, (0% ¢ + 8%Auﬁ““’) =0 — [d*z(dd+ 2z A- B)is conserved

8n2

® Decrease of 0¢¢ — increase of B with magnetic helicity [ d®z A - B

Stability of B = stability of magnetic helicity

Applications: generation of magnetic fields in cosmology and neutron stars -=RT V() .
— L]
[Joyce & Shaposhnikov '97; Anber & Sorbo '07; Akamatsu & Yamamoto '13]
| /
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Ot¢: chiral chemical potential or time deriv. of inflaton

Physical meaning of magnetic helicity?
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Magnetic helicity = linking number of magnetic flux pemouiin, et al. ‘05]

3 Q@Ca

Consider magnetic flux tubes for simplicity.

/d3a3A - B = 28, ®, Link (C1, Ca)

® &, &5 magnetic flux of flux tubes C1, Co

® Link (C1,C2): linking number between Cy & Cs

o ’ o
Derivation: use Biot-Savart law A(z) = L [ ddw'w
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Q. How universal is the chiral instability?
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Similar instabilities have been found in the context of holography
® Axion ED in background elec. field [Bergman et al., '11; Ooguri & Oshikawa '11](massive axion)

® (44 1) dim. Maxwell-Chern-Simons thy in background elec. field [Nakamura et al., '09]

Electric fields decrease? Magnetic fields with topological quantities increase?
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ReSult [Yamamoto & RY, '23]

® Decrease of bg. elec. fields & increase of mag. fields with topological quantities hold for them.

® Further generalization is possible

Generalized chiral instabilities

® Setup: massless Abelian p-form gauge theories with cubic topological couplings in flat spacetime
® |R instabilities in background elec. fields
® Decrease of bg. elec. fields & increase of mag. fields (inear analysis)

® Mag. fields are protected by non-invertible symmetries

In this talk, | consider axion ED in elec. field for concreteness.
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Instability of axion electrodynamics in background electric field

as an example of generalized chiral instabilities

Yamamoto & RY, 2305.01234



Four effects due to topological coupling
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® Induced current: V x B — % E = 5 (—E x V¢ + B;)

4n?2

Anomalous Hall effect [sikivie '84]

® Photon to axion: (97 — V2)¢ = L E-B

47292

Background E — instability of V¢ & B
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Instability of axion ED in bg. elec. field (vamamoto & rv. 23
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Amplification of V¢ & B due to
® Ampere law V x B= -3 E x V¢

® EOM of axion V2¢ = —M%E -B

Dispersion relation?
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Dispersion relation (sergman et al. '11; Ooguri & Oshikawa '11]

For k = (k,0,0), E = (0, E,0) EOM is

v 0 k v
a 0 a
W -k =2 ‘
as v 0 as
as —k 0 as
Instability in IR region k < %
® Tachyonic mode w =i %k — k2
w .
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Amplification of V¢ & B — decrease of E
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Decrease of E (vamamoto & Ry, 23]

0¢

Induced charge screens elec. field
® Elec. Gauss law V - E = 747%23 -Vo

® Direction of induced elec. field is opposite to E

Generated ¢ and B are stable due to dielectric polarization
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Increase of dielectric polarization (vamamoto & kv, 23

® Gauss law V- E = —ﬁB - V¢ — conservation of elec. flux [ dS - (E + %qﬁB)
® FE decreases — dielectric polarization fS dS - ¢ B increases

® Stability of V¢ and B = stability of dielectric polarization

Topological meaning of fS dS - $B7? (cf. magnetic helicity & linking number)
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J5dS - ¢B: linking number of B & V¢ on S pammoo & v, 2

Consider flux tube of B & thin wall of V¢
® B: two points with signs, V¢: circle on integral surface S
® Sign of ¢ changes between outside and inside the circle.
® |f circle surrounds either point, surface integral is non-zero, otherwise it is zero.

Generated B and V¢ are topologically stable.

I will call the integral “generalized magnetic helicity”
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Summary of instability of axion ED in E
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® Background E — instability

® Tachyonic generation of B & V¢

® Decrease of

® Stable V¢ and B due to generalized magnetic helicity fs dS - ¢B

For further generalization, please see our paper [Yamamoto & RY '23].
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Magnetic helicity and non-invertible symmetry



Conserved charges = symmetries? (converse of Noether theorem)

For the stable magnetic fields, conserved charges e.g., [ d3z(do¢ + SﬁA - B) are important.
Q. Does a symmetry exist for this charge?
A. Yes, but it cannot be an ordinary symmetry.

Q. What is the problem with the conserved charge or symmetry generator, e.g.,
1
U = exp (ia/ d3:c(80¢ + 8—2A . B)) for a €R, V: closed 3d space
v ™

acting on axion Ue!?UT = el®ei®
Al. Just a consequence of chiral anomaly (assuming a UV model with Dirac fermions)

A2. Exp. of magnetic helicity exp <iufd3m$A . B) is not large gauge invariant, so U is not physical

Why does the magnetic helicity dem#A - B violate the large gauge invariance?
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On large gauge invariance of magnetic helicity (1/3)

Large gauge invariance = Dirac string should be invisible

® Magnetic monopole [4 B - dS = 2mm

® Dirac string = unphysical magnetic flux tube to have single-valued A

Invisibility of Dirac string: independence of the choice of Dirac strings

® Magnetic helicity depends on the choice of Dirac strings

Pivae S ~3
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A more precise statement is...
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On large gauge invariance of magnetic helicity (2/3)

We assume that exp (m fv d3w8%A . B) is a unitary operator.
® Problem: integrand is not gauge invariant.

® Integrand can be gauge invariant using Stokes theorem with 9Qy =V

1 ~
exp (za/ d3w—A B) =exp | i diz 5 Fuw v
Qy 167

1% £,

® RHS is manifestly gauge invariant, but has ambiguity of choice of Qy

® We require the absence of ambiguity

m.@
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On large gauge invariance of magnetic helicity (3/3)

® The requirement means

oo )

L2

® @ =1 because [, d*r L5 F F* € Z

16 2
U x exp (ia fV dSmﬁA . B) does not generate any symmetry transf.
However...
We can modify magnetic helicity exp <mfd3:1:$A . B) for a € 27Q (e.g., a = 2{—1", qEZ)

in a gauge invariant way at the expense of invertibility (unitarity)!
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Ga uge invariant magnetic heIicity [Choi, et al., '22; Cérdova & Ohmori, '22]

[ Modification using partition function of Chern-Simons theory ]

exp (L/ d’zA - B) — /Dcexp (1/ dx (—ieijkciajck + Le”’“q@-ﬁ%))
47’I’q v Vv 47 27

® Essentially, it is a square completion %xz — —qy? 4 2zy so that ¢ is in numerator

® RHS: partition function of U(1) Chern-Simons theory
® c,: auxiliary U(1) gauge field on V, Dirac quant. [ d,,c, dS*" € 2nZ
® |arge gauge invariant: ¢ is in numerator
® Magnetic helicity: naive expression obtained by EOM F),,, = qgc,, only for trivial Dirac quantization f B-dS =0

® |nvertibility is lost

® path integral (sum) over phase factors (e.g., cos 8 ~ e*® 4+ ¢~%% is non-invertible)
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Non-invertible symmetry (cho, et al. 22: Cérdova & Ohmori, 22]

We have conserved & gauge invariant quantity

[ Generator of non-invertible symmetry ]

D= /Dcexp (1/ dx (—le”kcifﬂjck + Le”’“ciajAk>> X exp (—1/ d';.”l:(')()(f)>
v 47 27 q 1%

® Conservation law = EOM of axion

27

® Fractional rotation on axion: De!® =e ¢ €D
® Non-invertible transf. on magnetic monopole: D|monopole) = 0 (depending on g and V)
® Stability of magnetic helicity = existence of non-invertible symmetry

® Generalization: e.g., fS ¢B - dS — non-invertible 1-form symmetry [choi, et al., '22; RY '22]
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Magnetic helicity = linking number vamamoto & r, 23

Non-invertible symmetry can capture linked magnetic fluxes

D a- (> o e (BB, Lk 000 )

® Relation “f d3xA - B  linking number” still holds (uith some technical modification)
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Summary
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® Axion electrodynamics exhibits instability in the presence of background time dependent axion O¢¢ or
electric field.
® Generalized chiral instabilities: universal mechanism of these instabilities

® |nstabilities tend to be weakened.
® B & V¢ with linking number are generated.

® Stability of mag. fields is due to non-invertible symmetries.

® We can extend the mechanism to massless Abelian p-form gauge theories with cubic topological

interactions (see our paper [2305.01234])

® Future work: non-linear analysis, final state, including gravity, applications,...



Magnetic helicity = linking number (1/3)

d3mA B = 2®; &5 Link (C1, C2)
¢,

B(x) = &1J(Cr;x) + P2J(Ca;x)  with J(Cl;w):/c 83 (x — r)dr
1

® Magnetic field

® J(C1;): delta function on C1  line integral <> volume integral

/ v(r) ~d1‘:/d3m/ dr - v(x)83(x —7) :/d3m’v~J(Cl)
C1 C1

How can A be solved?



Magnetic helicity = linking number (2/3)
A=0K(S1)+ P2K(S2) with K(S1) = : 8% (x — r)dS(r)
Cy

® K (S1): delta function on S1, J(C1) =V x K(S1)

Derivation: Stokes theorem & partial integral
/d3m'v -J(Ch) = / v(r)-dr = V xwv(r)-dS
S1

Cy
— [ Ba(V xv) - K(S) = /dva LV x K(S1)

We can explicitly evaluate /d3wA -B



Magnetic helicity = linking number (3/3)

® Magnetic helicity
/dB:cAB = 2<I>1<I>2/d39cK(Sl)~J(C’2) =20,By [ K(Sy)-dr
Ca
® Using

K (S1) - dr = intersection number of S; & C2 = Link (C1, C2),
Ca

Ca

/91}/

Gy

we have

/dSwA - B = 2%, ®; Link (Cy, Ca)
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