Generalized chiral instabilities, linking numbers, and non-invertible symmetries

Ryo Yokokura (Keio U.)

2024. 11. 29

NU-Q Workshop 2024

Symmetry and Effective Field Theory of Quantum Matter

@ Niigata University

Based on N. Yamamoto & RY, JHEP 07 (2023) 045 [2305.01234]

Message

Non-invertible symmetries can be applicable to dynamics.

Overview

- Axion electrodynamics in (3+1) dimensions exhibits instability in the presence of background time dependent axion $\partial_t \phi$ or electric field.
- Generalized chiral instabilities: universal mechanism of these instabilities
 - Instabilities tend to be weakened.
 - $B \& \nabla \phi$ with linking number are generated.
 - Stability of generated fields can be stable due to non-invertible symmetries.

Contents

1 Introduction

2 Chiral instability

3 Instability of axion electrodynamics in background electric field

4 Magnetic helicity and non-invertible symmetry

Gapless modes = modes without energy (mass) gap

- Dispersion relation: $\omega=0$ for ${m k}={m 0}$.
- ullet Long wave excitation by infinitesimal energy o Dominating infrared (IR) physics
- Characterizing phase of matter: gapless phase
- Ubiquitous in physics: photon, phonon, Nambu-Goldstone bosons

The Lorentz symmetry is important for gapless modes.

Gapless modes and Lorentz symmetry

With Lorentz symmetry:

• Linear dispersion $\omega^2=k^2$ (I neglect higher order terms in this talk)

Without Lorentz symmetry (e.g., explicit breaking by background fields)

- ightarrow possibility of corrections in IR
 - 1st order of ω : $\omega^2 = \alpha\omega + k^2 \to \text{gapped mode } \omega = \alpha + \frac{1}{\alpha}k^2$
 - 1st order of k: $\omega^2 = \beta k + k^2 \rightarrow \text{unstable mode}$

Unstable mode

- Dispersion relation $\omega = \sqrt{k^2 + \beta k}$
- For $\beta<0$, there is instability $\omega=i\sqrt{|\beta k|-k^2}$ in finite IR region $0<|k|<|\beta|$ (Tachyonic mode $e^{-i\omega t+ikx}\propto e^{\sqrt{|\beta k|-k^2}}$ t)

Such an instability arises in realistic systems!

Axion electrodynamics = axion ϕ + photon a_{μ} + topological coupling [Wilczek '87]

Action (massless axion & photon)

$$S = -\int d^4x \left(\frac{v^2}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} + \frac{1}{16\pi^2} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \right)$$

v: decay constant, e: coupling constant (I sometimes omit them)

• Axion ϕ : pseudo-scalar field, photon A_{μ} : U(1) gauge field with Dirac quantization condition

Features

1. Simple and ubiquitous in modern physics

QCD axion, inflaton, moduli from string theory, π^0 meson, quasi-particle excitation,...

2. Cubic topological coupling $\phi F_{\mu\nu} \tilde{F}^{\mu\nu}$: determined by chiral anomaly in UV

Toy model of 10d, 11d supergravities $\sim C_3 \wedge F_4 \wedge F_4$ [Townsend '93; Harvey & Ruchayskiy '00]

Cubic topological coupling $\phi F_{\mu\nu} \tilde{F}^{\mu\nu}$ leads to non-trivial effects

Four effects due to topological coupling

- Induced current: $\nabla \times \boldsymbol{B} \partial_t \boldsymbol{E} = \frac{1}{4\pi^2} (\boldsymbol{B} \partial_t \phi \boldsymbol{E} \times \nabla \phi)$ Chiral magnetic effect [Fukushima, et al. '08]; anomalous Hall effect [Sikivie '84]
- ullet Induced charge: $abla \cdot oldsymbol{E} = -rac{1}{4\pi^2} oldsymbol{B} \cdot
 abla \phi$ [Sikivie '84]
- Photon to axion: $(\partial_t^2 \nabla^2)\phi = \frac{1}{4\pi^2} {\pmb E} \cdot {\pmb B}$

Background axion velocity $\partial_t \phi = \mathrm{const} \to \mathrm{instability}$ of photon

Chiral instability

Review based on Akamatsu & Yamamoto '13 and so on

Chiral instability [Carroll, et al. '89; Joyce & Shaposhnikov '97; Anber & Sorbo '07; Akamatsu & Yamamoto '13]

- Ampère law $\nabla imes oldsymbol{B} = rac{1}{4\pi^2} oldsymbol{B} \partial_t \phi$
- Background $\partial_t \phi
 eq 0 o m{j} \propto m{B}$ amplifies magnetic field

Dispersion relation?

Dispersion relation

$$C=\partial_t\phi$$

For k = (k, 0, 0), EOM is

$$(\omega^2 - k^2) \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = iC \begin{pmatrix} 0 \\ & -k \\ k \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

Instability in IR region k < C

• Tachyonic mode $\omega = i\sqrt{Ck - k^2}$

Is the instability pathological?

Instability tends to be weakened (linear analysis)

 $\partial_t \phi$ decreases (linear analysis)

- Faraday law: $abla imes oldsymbol{E} = -\partial_t oldsymbol{B}$
- \bullet EOM of axion: $\partial_t^2 \phi = \frac{1}{4\pi^2} {\pmb E} \cdot {\pmb B} < 0$

Generated magnetic field is stable

Generation of stable magnetic field

- EOM of axion $\partial_{\mu}(\partial^{\mu}\phi + \frac{1}{8\pi^2}A_{\nu}\tilde{F}^{\mu\nu}) = 0 \rightarrow \int d^3x (\partial_t\phi + \frac{1}{8\pi^2}\boldsymbol{A}\cdot\boldsymbol{B})$ is conserved
- ullet Decrease of $\partial_t \phi o$ increase of $m{B}$ with magnetic helicity $\int d^3 m{x} \, m{A} \cdot m{B}$
- ullet Stability of B= stability of magnetic helicity
- Applications: generation of magnetic fields in cosmology and neutron stars

 $\partial_t \phi$: chiral chemical potential or time deriv. of inflaton

Physical meaning of magnetic helicity?

Magnetic helicity = linking number of magnetic flux [Demoulin, et al., '06]

Consider magnetic flux tubes for simplicity.

$$\int d^3 \boldsymbol{x} \, \boldsymbol{A} \cdot \boldsymbol{B} = 2\Phi_1 \Phi_2 \operatorname{Link} (C_1, C_2)$$

- Φ_1 , Φ_2 magnetic flux of flux tubes C_1 , C_2
- $\operatorname{Link}(C_1, C_2)$: linking number between $C_1 \& C_2$

Derivation: use Biot-Savart law $m{A}(m{x}) = rac{1}{4\pi} \int d^3 m{x}' rac{m{B}(m{x}') imes (m{x} - m{x}')}{|m{x} - m{x}'|^3}$

Q. How universal is the chiral instability?

Similar instabilities have been found in the context of holography

- Axion ED in background elec. field [Bergman et al., '11; Ooguri & Oshikawa '11](massive axion)
- ullet (4 + 1) dim. Maxwell-Chern-Simons thy in background elec. field [Nakamura et al., '09]

Electric fields decrease? Magnetic fields with topological quantities increase?

Result [Yamamoto & RY, '23]

- Decrease of bg. elec. fields & increase of mag. fields with topological quantities hold for them.
- Further generalization is possible

Generalized chiral instabilities

- ullet Setup: massless Abelian p-form gauge theories with cubic topological couplings in flat spacetime
- IR instabilities in background elec. fields
- Decrease of bg. elec. fields & increase of mag. fields (linear analysis)
- Mag. fields are protected by non-invertible symmetries

In this talk, I consider axion ED in elec. field for concreteness.

Yamamoto & RY, 2305.01234

Instability of axion electrodynamics in background electric field

as an example of generalized chiral instabilities

Four effects due to topological coupling

- Induced current: $abla imes m{B} \partial_t m{E} = rac{1}{4\pi^2} (-m{E} imes
 abla \phi + B \partial_t \phi)$ Anomalous Hall effect [Sikivie 184]
 - .
- Photon to axion: $(\partial_t^2 \nabla^2)\phi = \frac{1}{4\pi^2 v^2} {m E} \cdot {m B}$

Background $oldsymbol{E}
ightarrow$ instability of $abla \phi$ & $oldsymbol{B}$

Instability of axion ED in bg. elec. field [Yamamoto & RY, '23]

Amplification of $\nabla \phi$ & \boldsymbol{B} due to

- Ampère law $\nabla imes oldsymbol{B} = -rac{1}{4\pi^2} oldsymbol{E} imes
 abla \phi$
- ullet EOM of axion $abla^2\phi=-rac{1}{4\pi^2}oldsymbol{E}\cdotoldsymbol{B}$

Dispersion relation?

Dispersion relation [Bergman et al., '11; Ooguri & Oshikawa '11]

For $\mathbf{k} = (k, 0, 0)$, $\mathbf{E} = (0, E, 0)$ EOM is

$$(\omega^{2} - k^{2}) \begin{pmatrix} v\phi \\ a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} = i \frac{E}{v} \begin{pmatrix} 0 & & k \\ & 0 & \\ & & 0 \\ -k & & 0 \end{pmatrix} \begin{pmatrix} v\phi \\ a_{1} \\ a_{2} \\ a_{3} \end{pmatrix}$$

Instability in IR region $k<\frac{E}{v}$

• Tachyonic mode $\omega = i\sqrt{\frac{E}{v}k - k^2}$

Amplification of $abla \phi$ & ${m B}$ ightarrow decrease of ${m E}$

Decrease of $m{E}$ [Yamamoto & RY, '23]

Induced charge screens elec. field

- ullet Elec. Gauss law $abla \cdot oldsymbol{E} = -rac{1}{4\pi^2} oldsymbol{B} \cdot
 abla \phi$
- ullet Direction of induced elec. field is opposite to E

Generated ϕ and \boldsymbol{B} are stable due to dielectric polarization

Increase of dielectric polarization [Yamamoto & RY, '23]

- Gauss law $abla \cdot E = -rac{1}{4\pi^2} B \cdot
 abla \phi
 ightarrow ext{conservation of elec. flux } \int_S dS \cdot (E + rac{1}{4\pi^2} \phi B)$
- ullet E decreases o dielectric polarization $\int_S dm{S} \cdot \phi m{B}$ increases
- ullet Stability of $abla \phi$ and ${oldsymbol B}=$ stability of dielectric polarization

Topological meaning of $\int_S dm{S} \cdot \phi m{B}$? (cf. magnetic helicity & linking number)

$\int_S dm{S} \cdot \phi m{B}$: linking number of $m{B}$ & $abla \phi$ on S [Yamamoto & RY, '23]

Consider flux tube of ${m B}$ & thin wall of $\nabla \phi$

- B: two points with signs, $\nabla \phi$: circle on integral surface S
- ullet Sign of ϕ changes between outside and inside the circle.
- If circle surrounds either point, surface integral is non-zero, otherwise it is zero.

Generated ${m B}$ and $\nabla \phi$ are topologically stable.

I will call the integral "generalized magnetic helicity"

Summary of instability of axion ED in $oldsymbol{\it{E}}$

- ullet Background $oldsymbol{E}
 ightarrow$ instability
- Tachyonic generation of ${m B}$ & $\nabla \phi$
- ullet Decrease of $oldsymbol{E}$
- ullet Stable $abla \phi$ and ${m B}$ due to generalized magnetic helicity $\int_S d{m S} \cdot \phi {m B}$

For further generalization, please see our paper [Yamamoto & RY '23].

Contents

1 Introduction

2 Chiral instability

3 Instability of axion electrodynamics in background electric field

4 Magnetic helicity and non-invertible symmetry

Conserved charges ⇒ symmetries? (converse of Noether theorem)

For the stable magnetic fields, conserved charges e.g., $\int d^3x (\partial_0\phi + \frac{1}{8\pi^2} \mathbf{A} \cdot \mathbf{B})$ are important.

- Q. Does a symmetry exist for this charge?
- A. Yes, but it cannot be an ordinary symmetry.
- Q. What is the problem with the conserved charge or symmetry generator, e.g.,

$$U=\exp\left(ilpha\int_V d^3m{x}(\partial_0\phi+rac{1}{8\pi^2}m{A}\cdotm{B})
ight) \quad ext{for} \quad lpha\in\mathbb{R},\,V$$
: closed 3d space

acting on axion $Ue^{i\phi}U^{\dagger}=e^{i\alpha}e^{i\phi}$

- A1. Just a consequence of chiral anomaly (assuming a UV model with Dirac fermions)
- A2. Exp. of magnetic helicity $\exp\left(i\pmb{\alpha}\int d^3\pmb{x}\frac{1}{8\pi^2}\pmb{A}\cdot\pmb{B}\right)$ is not large gauge invariant, so U is not physical

Why does the magnetic helicity $\int d^3x \frac{1}{8\pi^2} A \cdot B$ violate the large gauge invariance?

On large gauge invariance of magnetic helicity (1/3)

Large gauge invariance = Dirac string should be invisible

- Magnetic monopole $\int_S {m B} \cdot d{m S} = 2\pi m$
- ullet Dirac string = unphysical magnetic flux tube to have single-valued $oldsymbol{A}$
- Invisibility of Dirac string: independence of the choice of Dirac strings
- Magnetic helicity depends on the choice of Dirac strings

A more precise statement is...

On large gauge invariance of magnetic helicity (2/3)

We assume that $\exp\left(i\pmb{\alpha}\int_V d^3\pmb{x} \frac{1}{8\pi^2}\pmb{A}\cdot\pmb{B}\right)$ is a unitary operator.

- Problem: integrand is not gauge invariant.
- ullet Integrand can be gauge invariant using Stokes theorem with $\partial\Omega_V=V$

$$\exp\left(i\alpha \int_{V} d^{3}\boldsymbol{x} \frac{1}{8\pi^{2}}\boldsymbol{A} \cdot \boldsymbol{B}\right) = \exp\left(i\alpha \int_{\Omega_{V}} d^{4}\boldsymbol{x} \frac{1}{16\pi^{2}} F_{\mu\nu} \tilde{F}^{\mu\nu}\right)$$

- ullet RHS is manifestly gauge invariant, but has ambiguity of choice of Ω_V
- We require the absence of ambiguity

On large gauge invariance of magnetic helicity (3/3)

• The requirement means

$$\exp\left(-i\alpha \int_{\Omega} d^4x \frac{1}{16\pi^2} F_{\mu\nu} \tilde{F}^{\mu\nu}\right) = 1$$

•
$$e^{i \alpha} = 1$$
 because $\int_{\Omega} d^4 x \frac{1}{16 \pi^2} F_{\mu \nu} \tilde{F}^{\mu \nu} \in \mathbb{Z}$

$$U \propto \exp\left(ilpha\int_V d^3m{x} rac{1}{8\pi^2}m{A}\cdotm{B}
ight)$$
 does not generate any symmetry transf.

However...

We can modify magnetic helicity
$$\exp\left(i\alpha\int d^3x \frac{1}{8\pi^2} \pmb{A}\cdot \pmb{B}\right)$$
 for $\alpha\in 2\pi\mathbb{Q}$ (e.g., $\alpha=\frac{2\pi}{q}$, $q\in\mathbb{Z}$) in a gauge invariant way at the expense of invertibility (unitarity)!

Gauge invariant magnetic helicity [Choi, et al., '22; Córdova & Ohmori, '22]

Modification using partition function of Chern-Simons theory

$$\exp\left(\frac{i}{4\pi q} \int_{V} d^{3}\boldsymbol{x} \boldsymbol{A} \cdot \boldsymbol{B}\right) \rightarrow \int \mathcal{D}\boldsymbol{c} \exp\left(i \int_{V} d^{3}\boldsymbol{x} \left(-\frac{\boldsymbol{q}}{4\pi} \epsilon^{ijk} c_{i} \partial_{j} c_{k} + \frac{i}{2\pi} \epsilon^{ijk} c_{i} \partial_{j} A_{k}\right)\right)$$

- Essentially, it is a square completion $\frac{1}{q}x^2 \to -qy^2 + 2xy$ so that q is in numerator
- RHS: partition function of U(1) Chern-Simons theory
 - c_{μ} : auxiliary U(1) gauge field on V, Dirac quant. $\int \partial_{\mu} c_{\nu} dS^{\mu\nu} \in 2\pi \mathbb{Z}$
 - Large gauge invariant: q is in numerator
 - Magnetic helicity: naive expression obtained by EOM $F_{\mu\nu}=qc_{\mu\nu}$ only for trivial Dirac quantization $\int {m B}\cdot d{m S}=0$
- Invertibility is lost
 - path integral (sum) over phase factors (e.g., $\cos \theta \sim e^{i\theta} + e^{-i\theta}$ is non-invertible)

Non-invertible symmetry [Choi, et al., '22; Córdova & Ohmori, '22]

We have conserved & gauge invariant quantity

Generator of non-invertible symmetry

$$D = \int \mathcal{D}c \exp\left(i \int_{V} d^{3}x \left(-\frac{q}{4\pi} \epsilon^{ijk} c_{i} \partial_{j} c_{k} + \frac{i}{2\pi} \epsilon^{ijk} c_{i} \partial_{j} A_{k}\right)\right) \times \exp\left(\frac{2\pi i}{q} \int_{V} d^{3}x \partial_{0}\phi\right)$$

- Conservation law = EOM of axion
- Fractional rotation on axion: $De^{i\phi} = e^{\frac{2\pi i}{q}}e^{i\phi}D$
- ullet Non-invertible transf. on magnetic monopole: $D|{\sf monopole}\rangle=0$ (depending on q and V)
- Stability of magnetic helicity = existence of non-invertible symmetry
- ullet Generalization: e.g., $\int_S \phi {m B} \cdot d{m S} o$ non-invertible 1-form symmetry [Choi, et al., '22; RY '22]

Magnetic helicity = linking number [Yamamoto & RY, '23]

Non-invertible symmetry can capture linked magnetic fluxes

$$D\left[A = \frac{2\pi i}{q} \Phi_1 \Phi_2 \text{Link}(C_1, C_2)\right]$$

• Relation " $\int d^3 {m x} {m A} \cdot {m B} \propto$ linking number" still holds (with some technical modification)

Summary

- Axion electrodynamics exhibits instability in the presence of background time dependent axion $\partial_t \phi$ or electric field.
- Generalized chiral instabilities: universal mechanism of these instabilities
 - Instabilities tend to be weakened.
 - $B \& \nabla \phi$ with linking number are generated.
 - Stability of mag. fields is due to non-invertible symmetries.
- We can extend the mechanism to massless Abelian p-form gauge theories with cubic topological interactions (see our paper [2305.01234])
- Future work: non-linear analysis, final state, including gravity, applications,...

Magnetic helicity = linking number (1/3)

$$\int d^3 \boldsymbol{x} \, \boldsymbol{A} \cdot \boldsymbol{B} = 2\Phi_1 \Phi_2 \operatorname{Link} (C_1, C_2)$$

Magnetic field

$$oldsymbol{B}(oldsymbol{x}) = \Phi_1 oldsymbol{J}(C_1; oldsymbol{x}) + \Phi_2 oldsymbol{J}(C_2; oldsymbol{x}) \quad ext{with} \quad oldsymbol{J}(C_1; oldsymbol{x}) = \int_C \, \delta^3(oldsymbol{x} - oldsymbol{r}) doldsymbol{r}$$

• $J(C_1; x)$: delta function on C_1 line integral \leftrightarrow volume integral

$$\int_{C_1} v(r) \cdot d\boldsymbol{r} = \int d^3\boldsymbol{x} \int_{C_1} d\boldsymbol{r} \cdot v(x) \delta^3(\boldsymbol{x} - \boldsymbol{r}) = \int d^3\boldsymbol{x} v \cdot \boldsymbol{J}(C_1)$$

How can A be solved?

Magnetic helicity = linking number (2/3)

$$m{A} = \Phi_1 m{K}(S_1) + \Phi_2 m{K}(S_2)$$
 with $m{K}(S_1) = \int_{S_1} \delta^3(m{x} - m{r}) dm{S}(m{r})$

• $K(S_1)$: delta function on S_1 , $J(C_1) = \nabla \times K(S_1)$

Derivation: Stokes theorem & partial integral

$$\int d^3 \boldsymbol{x} v \cdot \boldsymbol{J}(C_1) = \int_{C_1} v(r) \cdot d\boldsymbol{r} = \int_{S_1} \nabla \times v(r) \cdot d\boldsymbol{S}$$

$$= \int d^3 \boldsymbol{x} (\nabla \times v) \cdot \boldsymbol{K}(S_1) = \int d^3 \boldsymbol{x} v \cdot \nabla \times \boldsymbol{K}(S_1)$$
We can explicitly evaluate $\int d^3 \boldsymbol{x} \boldsymbol{A} \cdot \boldsymbol{B}$

Magnetic helicity = linking number (3/3)

Magnetic helicity

$$\int d^3 \boldsymbol{x} \boldsymbol{A} \cdot \boldsymbol{B} = 2\Phi_1 \Phi_2 \int d^3 \boldsymbol{x} \boldsymbol{K}(S_1) \cdot \boldsymbol{J}(C_2) = 2\Phi_1 \Phi_2 \int_{C_2} \boldsymbol{K}(S_1) \cdot d\boldsymbol{r}$$

Using

$$\int_{C_2} \boldsymbol{K}(S_1) \cdot d\boldsymbol{r} = \text{intersection number of } S_1 \ \& \ C_2 = \operatorname{Link} (C_1, C_2),$$

we have

$$\int d^3 \boldsymbol{x} \boldsymbol{A} \cdot \boldsymbol{B} = 2\Phi_1 \Phi_2 \operatorname{Link} (C_1, C_2)$$

Bibliography - I

- P. K. Townsend, "Effective description of axion defects," Phys. Lett. B 309 (1993) 33–38, [arXiv:hep-th/9303171].
 (page 8).
- [2] J. A. Harvey and O. Ruchayskiy, "The Local structure of anomaly inflow," JHEP 06 (2001) 044, [arXiv:hep-th/0007037].(page 8).
- [3] F. Wilczek, "Two Applications of Axion Electrodynamics," Phys. Rev. Lett. 58 (1987) 1799. (page 8).
- [4] P. Sikivie, "On the Interaction of Magnetic Monopoles With Axionic Domain Walls," Phys. Lett. B 137 (1984) 353–356. (pages 9, 19).
- [5] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, "The Chiral Magnetic Effect," Phys. Rev. D 78 (2008) 074033, [arXiv:0808.3382 [hep-ph]]. (page 9).
- [6] S. M. Carroll, G. B. Field, and R. Jackiw, "Limits on a Lorentz and Parity Violating Modification of Electrodynamics," Phys. Rev. D 41 (1990) 1231. (page 11).
- [7] M. Joyce and M. E. Shaposhnikov, "Primordial magnetic fields, right-handed electrons, and the Abelian anomaly," Phys. Rev. Lett. 79 (1997) 1193–1196,
 [arXiv:astro-ph/9703005].
 (page 11).
- [8] M. M. Anber and L. Sorbo, "Nflationary Magnetic Fields," AIP Conf. Proc. 903 (2007) no. 1, 669–672. (page 11).
- [9] Y. Akamatsu and N. Yamamoto, "Chiral Plasma Instabilities," Phys. Rev. Lett. 111 (2013) 052002, [arXiv:1302.2125 [nucl-th]]. (page 11).
- [10] H. Ooguri and M. Oshikawa, "Instability in magnetic materials with dynamical axion field," Phys. Rev. Lett. 108 (2012) 161803, [arXiv:1112.1414 [cond-mat.mes-hall]] (page 16).

Bibliography - II

- [11] S. Nakamura, H. Ooguri, and C.-S. Park, "Gravity Dual of Spatially Modulated Phase," Phys. Rev. D81 (2010) 044018, [arXiv:0911.0679 [hep-th]]. (page 16).
- [12] Y. Choi, H. T. Lam, and S.-H. Shao, "Noninvertible Global Symmetries in the Standard Model," Phys. Rev. Lett. 129 (2022) no. 16, 161601, [arXiv:2205.05086 [hep-th]]. (pages 32, 33).
- [13] C. Cordova and K. Ohmori, "Non-Invertible Chiral Symmetry and Exponential Hierarchies," arXiv:2205.06243 [hep-th]. (pages 32, 33).
- [14] Y. Choi, H. T. Lam, and S.-H. Shao, "Non-invertible Gauss Law and Axions," arXiv:2212.04499 [hep-th]. (page 33).
- [15] R. Yokokura, "Non-invertible symmetries in axion electrodynamics," arXiv:2212.05001 [hep-th]. (page 33).