New perspectives, connections, and
generalizations of Efimov physics

\\:—‘ Chris H. Greene, Purdue University

These two former
PhD students in my
group have done the
heavy lifting on the
topics | will discuss

today
Michael Higgins Yu-Hsin Chen
(now a postdoc (now in a faculty
at Purdue) position in Taiwan)

Thanks to the NSF for support!



Strategy of the adiabatic hyperspherical representation: convert the
partial differential Schroedinger equation into an infinite set of coupled

_ ordinary differential equations:
First, we set:

w — R(3(N 1) 1)/2\1_, L A2
(in order to To solve: ﬁ — — ~+ -+ V(R.0.¢) |yg=E ¢y
eliminate 1 21 GR? 2R”
order
derivativesin  Now solve the fixed-R Schroedinget A2 15
K.E. operator) equation, for eigenvalues U, (R): ——+——+V(R.0.¢) [P (R:Q)=U,(R)D(R:Q)
2R BuR~

Next expand the desired solution é {.JFIE{RJ! ) = E F z(R) {IJI_{R; ()

into the complete set of eigenfunctions

And the original T.I.S.Eqn. is transformed into the following set (coupled ODEs)
which can be truncated on physical grounds, with the eigenvalues
interpretable as adiabatic potential curves, in the Born-Oppenheimer sense.
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1 d
F -(R)—— 2P, (R)— + 0, (R)
NAPAY) 2.“‘ ~ { ”{ }(fR Q

1 d?

+U,(R) F, :(R)=EF,z(R)
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Different calculation methods of the adiabatic hyperspherical potential curves
and nonadiabatic couplings:

Method 1. Analytical treatment (3 bodies with zero-range interactions), using
the hyperangular Green’s function (Rittenhouse, Mehta, CHG, PRA 82 022706

Green’s functions and the adiabatic hyperspherical method /. . system of N particles, x, denote the d = 3N - 3 Cartesian
components needed to specify the relative positions of the N

\/ﬁR — \/} :d | Mixiz particles (with d-1 hyperangles here)
1=
2 } : 2
A —_— Al'ja

V(R,Q) =) R “VPE(R)®,(R; Q) <
" h? A2 ] A — xs d . d
V(R,Q) | ©,(R; ) = uy(R)P,(R; ) P M, T
_ZM R2 ] J !
e d*> (d-3)d-1) ;
|:_2M (dR2 — AR? ) + un(R)} Fu(R) Prn = <<I>m(R;Q) A <I>n(R;sz)>,
82
an — <(Dm(Ra Q) W CD”(R; Q))

- [2P d + ]F R)= EF,(R
. - nmﬁ Qnm m( )— n( )



Some basic properties of adiabatic potential energy curves in hyperspherical coordinates:

1. The hyperangular operator A2is Hermitian and has R-independent eigenvalues, which means that the diagonal
potentials U _(R) for the NONINTERACTING system (V=0) are all known analytically,

2
UV(R) — ENI(ENI T Uh e.g. for 3 bosons, the lowest

21 R? value of ¢y is 3/2, whereas
for 4 bosons, the lowest value
of #ni is 3. This is important

2. For every possible fragmentation threshold of the for discerning threshold laws
N-body system allowed for the symmetry being of transition matrix elements
considered, there must be at least one potential to and/or from the N-body
curve converging to its energy at R = infinity continuum states, as in

recombination, i.e. for any
short range dominated

process, T k£f+1/2]{£i+1/2
3. When an Efimov effect is present, at least one fi X f ()
potential curve converging to E=0 is negative,

meaning that 1

4. For s-wave o-function interactions in 3D
with finite a, the asymptotic potentials

— ) converging to the N-body continuum have the
Eeﬂ’ = —— + 18 sing y

form:
Int (4 1)A?
as R — 00, Upin(R) — Ny + 1)

a
21 R? i Cﬁ



Implications of the attractive alp’ potential at long range

the form, ,
he [ log(log + 1 a
uo(p) — 2_( t( ﬂ; ) + C_?,)
H p P
is: (5]{% —CCIA/(QZe{T + 2Zeﬁ2)
— 0

So the phaseshift is linear in k for ALL nonzero values of the centrifugal potential,
but any transition matrix element obeys the ordinary Wigner threshold law, namely:

Ty ox kff“ml{fqi“m

(4



Some other interesting special cases for 3 or 4 fermions :

N, L™ (spin state) (unitarity)
Eeﬂ: eft
3,0+, (spins up,up,up) 15/2 1.00 (VP infinite scatt. Vol.)
3,1+, (spins up,up,up) 712 1.00 (VP infinite)
3,1-, (spins up,up,up) 9/2 0.011 (VP infinite)
3,1+, (up,up,down) 712 1.00 (VP infinite)
3,1-, (up,up,down) 5/2 0.00 (VP infinite)

Yu-Hsin Chen & CHG, PRA 2022 (3 fermions, p-wave unitarity)

4,0+, (up,up,down,down) 5 2.01 (ainfinite)
PRA 2022 Michael Higgins 3 or 4 fermions

Recall that in the ordinary Efimov effect for 3 bosons or 3 different spin
fermions, the following values hold:

Eeff: 3/2 Eeff (unitarity, a) =-1/2 +1 < (approximately)
|e Eeff(feff‘"l) -~ '5/4

T ONT W x—3N
Note that K (N-body recomb) oc J6F2ter—3N



L" lev
7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 23/2
non-interacting
1.666 4.627 6.614 15/2 8.332 19/2 10.562 23/2 23/2
o+ Tl at s-wave unitary limit and 11 non-interacting
1 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2
™ at p-wave unitary limit and 1] non-interacting
1 1.666 4.627 6.614 15/2 8.332 19/2 10.562 23/2
T] at s-wave unitarity and 11 at p-wave unitary limit
7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 23/2
non-interacting
7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2 23/2
1+ 1) at s-wave unitary limit and 11 non-interacting
1 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2
™ at p-wave unitary limit and 1] non-interacting
1 7/2 11/2 15/2 15/2 19/2 19/2 23/2 23/2
11 at s-wave unitarity and 11 at p-wave unitary limit
5/2 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2
non-interacting
1.272 3.858 9/2 5.216 13/2 13/2 7.553 17/2 17/2
1- 1) at s-wave unitary limit and 11 non-interacting
0 2 5/2 9/2 9/2 13/2 13/2 13/2 17/2
™ at p-wave unitary limit and 1] non-interacting
0 1.272 2 3.858 9/2 5.216 13/2 13/2 7.553
1] at s-wave unitarity and 11 at p-wave unitary limit
9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2 21/2
non-interacting
9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2 21/2
9 Tl at s-wave unitary limit and 11 non-interacting
2 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2
™ at p-wave unitary limit and 1| non-interacting
2 9/2 9/2 13/2 13/2 13/2 17/2 17/2 17/2

T] at s-wave unitarity and 11 at p-wave unitary limit

TABLE II. Comparison of the 1% to 9*" [.,, values for trimers consisting of two spin-up and one spin-down fermion 1)
with the non-interacting values of [. . Cases considered involve different spin fermions that are either at s-wave unitarity or
Other cases show the same spin fermions either at p-wave unitarity or
noninteracting. The bold and underlined numbers correspond to the [, values of the s-wave unitary channel and the p-wave

else are noninteracting as are labeled in the Table.

unitary channel, respectively.

Unitarity reductions of the
centrifugal barrier constant |,
for Fermionic 3-body systems
of different symmetries

Yu-Hsin Chen & CHG
arXiv:2408.08993

Universal trimers with p-wave
interactions and the faux-
Efimov effect

See also 2022 PRA

For some symmetries with p-
wave interactions at unitarity
a faux-Efimov effect,
discussed in my tutorial
lectures at some length



Nonresonant Density of States Enhancement

for Few-Neutron Systems
Chris Greene, Purdue University

with Michael Higgins, Alejandro Kievsky and Michele Viviani
(on the 3n and 4n systems)

and on the 3 unitary fermions,
with Yu-Hsin Chen g*



Outline for Few Neutrons

1. Theoretical search for a low energy bound or
resonant trineutron or tetraneutron, and
connections with Efimov physics and
universality, see PRL 125, 052501 (2020)

Further elaborations were subsequently
published in: Phys. Rev. C 103, 024004 (2021)



Results from the 3n, 4n experimental literature:

Expt: a4n candidate published in PRL 116, 052501 (2016), Kisamori et
al.
conclusion: its energy is (J.83 = (0L.65(stat) = 1.25(svst) MeV

And a Nature News & Views by Bertulani & Zelevinsky, > 2000 page views

This experiment measured the reaction “He+8He - 8Be+4n
.... And observed a surplus of very low energy events, interpreted as a
tetraneutron resonance (or even a bound state couldn’t be ruled out)

12 T | L | L | LI | LI L | LI | LI | T 11 | I
- (a) —— continuum + background -
T Bt background x 10 |
10 wave packet o=
- just after reaction \@ g,J .
> ol Ny | Surplus of 4n events
§ _ resonance A~ "4 direct decay _ are observed at low
- ™) - |
S 6F &) piig 4 energy!
S T & Y/ .
=
S 4r -

]
|

?Wﬂ

0 LN '"&’T'ET%T \\&@ﬂ—@'ﬁ%
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E4n(MeV)




And, in a more recent experiment, Physics Letters B 824(2022)136799:
Indications for a bound tetraneutron Reaction studied: 7Li+’Li=>19C+4n

Thomas Faestermann ®*, Andreas Bergmaier”, Roman Gernhauser?, Dominik Koll*!,
Mahmoud Mahgoub ¢

2 Department of Physics, Technical University of Munich, D-85748 Garching, Germany

Y Institute for Applied Physics and Metrology, Universitdt der Bundeswehr Miinchen, D-85577 Neubiberg, Gern
© Faculty of Science, Jazan University, Jazan, Saudi Arabia

4 Faculty of Science, Sudan University of Science and Technology, Khartoum, Sudan

E*("°C+4n)/ MeV

“...Therefore, we favor the
interpretation that this peak
corresponds to 1°C in the first
excited state at 3.354 MeV and
a tetraneutron with a binding
energy of +0.42 +0.16MeV.”

counts/10mCb/200keV

Lo

22 24 26 28
energy ('°C)/ MeV
Using the reaction ’Li(’Li,'°C) we tried to populate states in the tetraneutron. A peak in the energy
spectrum of identified '9C, which we cannot attribute to a reaction with any other of the target
components, corresponds to an excitation of the '°C+4n system of 2.93 & 0.16 MeV. Under different
kinematic conditions an equivalent peak was observed. For a binding energy of the tetraneutron of
—2.93 MeV a much larger width than the observed upper limit of I' < 0.24 MeV (mainly due to
experimental spread) is expected. Therefore, we favor the interpretation that this peak corresponds to 19C

in the first excited state at 3.354 MeV and a tetraneutron with a binding energy of 4+0.42 +0.16 MeV.



Observation ofacorrelated free

four-neutronsystem

Here we report on
the observation of a
resonance-like structure near
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M Check for updates
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threshold in the four-neutron
system that is consistent with
a quasi-bound tetraneutron
state existing for a
very short time.

Laboratory frame Protor ./ B
8 4
8He Target e He(p: p He)
3 - — 4
roton - n resonance
. P . Zbeam 30 .
b e T i T e - -- Continuum
‘\ - — Background
“He % = g
S . — Total
N 20 b
Centre-of-mass frame ) Scattered proton b =
0. _=160° Q u
Projectile *He W / 2 =
(ol gl JCEee— 7% ‘ Target proton =
3 -
0
Scattered “He ‘ o 10
Fig.1|Schematicillustration ofthe quasi-elasticreactioninvestigatedin »
this work. Top: quasi-elastic scattering of the *He core from a ®He projectile off n * v
aprotontargetinthelaboratory frame. The length of the arrowsrepresents the 0 ! . — w

momentum per nucleon (the velocity)

of theincoming and outgoing

particles. Z,., is the beam axis. Bottom: the equivalent p-*Heelasticscattering
intheir centre-of-mass frame, where we consider reactions atbackward angles
closeto180°,8. ,, 2160°.In this frame, the momentum of the proton balances
thatofthe*He,P,=—P4,,, thatis, the protonis four times faster than the *He.




Shortly after the publication of this experimental result by
Kisamori et al. in 2016, many nuclear theory groups tackled
this problem with renewed excitement, trying to figure out
whether our current understanding of nuclear forces is
consistent with the possibility of a 4-neutron resonance
existing at low energy below 1 MeV.

The answers from the strongest theory groups?

Hiyama , Lazauskas, Carbonell, Kamimura : NO resonance can exist
Gandolfi, Hammer, Klos, Lynn, Schwenk : a resonance could exist
Fossez, Rotureau, Michel, Ploszajczak : a resonance should exist

Shirokov,Papadimitriou,Mazur,Mazur, Roth,Vary : a resonance should exist
Deltuva: NO resonance can exist

Intrigued by this controversy, Michael Higgins, myself,
and the Pisa group of Alejandro Kievsky and Michele
Viviani decided to address this problem using our
adiabatic hyperspherical toolkit — it took us 3 years!



First: a brief review of recent 3n, 4n theory

Theory: Hiyama, Lazauskas, Carbonell, Kamimura 2016 Phys. Rev. C.

|
conclusion: “...a remarkably attractive 3N force would be required...” NO!
Gandolfi, Hammer, Klos, Lynn, Schwenk Phys. Rev. Lett. 118, 232501 2017 |
conclusion: a three-neutron resonance exists below a four-neutron YES!
resonance in nature and is potentially measurable
Fossez, Rotureau, Michel, Ploszajczak Phys. Rev. Lett. 119, 032501 (2017) YES!

conclusion: while the energy (4n) ...may be compatible with expt... its width must
be larger than the reported upper limit =» (probably) ...reaction process too short to
form a nucleus
Shirokov,Papadimitriou,Mazur,Mazur, Roth,Vary Phys. Rev. Lett. 117, 182502 YES!
(2016) conclusion: 4n resonance, E=0.8 MeV, I = 1.4 MeV

Tetraneutron: Rigorous continuum calculation, A.Deltuva in Physics Letters B NO!
782(2018) 238-241 “... This indicates the absence of an observable 4n resonance...”

Tri-neutron: Three-neutron resonance study using transition operators A. Deltuva, NO!

PRC 97, 034001 (2018) “...There are no physically observable three-neutron resonant
states consistent with presently accepted interaction models”



Our main theoretical tool: formulate
the problem in hyperspherical
coordinates, treating the hyperradius

R adiabatically

The hyperradius R (squared) is a
coordinate proportional to total moment
of inertia of any N-particle system, i.e.:

> _ 1 2
R Vi Z Hlir; aISO p2
I

Here r;is the distance of the i-th particle
from the center-of-mass. All other
coordinates of the system are 3N-4
hyperangles.

And then the rest of the
problem comes down to
calculating energy levels as a
function of R, which we call
“hyperspherical potential
curves”, and their mutual
couplings, which can then be
used to compute bound state
and resonance properties,
scattering and
photoabsorption behavior,
nonperturbatively

This follows the formulation of the N-body problem in
the adiabatic hyperspherical representation, as
pioneered by Macek, Fano, Lin, Klar, and others



Strategy of the adiabatic hyperspherical representation: FOR ANY NUMBER OF
PARTICLES, convert the partial differential Schroedinger equation into an
infinite set of coupled ordinary differential equations:

1 r}'z _-"‘LE
_ - 4 3
2 9R? 2uR”

+V(R.0.¢)

TO SOIVe: ﬁ

{JFIE:E{IJFIE

First solve the fixed-R
Schroedinger equation, for
eigenvalues U, (R):

A2 15
+ ~+V(R.0.9)

> ® (R:Q)=U,R)P,(R:Q))
2uR-  8uR~

Next expand the desired solution | | |
into the complete set of hyperangle == i/z( R () )= E F,p(R)P,(R:Q))
”

eigenfunctions with unknowns F(R)

And the original T.I.S.Egn. is transformed into the following
set which can be truncated on physical grounds, with the
eigenvalues interpretable as adiabatic potential curves, in
the Born-Oppenheimer sense.

1 d?

F, z(R)=EF,z(R)

+U,(R)

4

2 dR?

E ) Z ' v |
. l: ' 2 JU.. 1" vy { } dR.




Notes

« Various methods can be used to compute the needed
potential curves and couplings: diagonalization in a
basis set of hyperspherical harmonics, or correlated
Gaussians, or Monte Carlo techniques, etc.

« Atheorem exists about the truncation to a single
potential curve, i.e. the adiabatic approximation, namely:

—|f all diagonal and nondiagonal couplings are neglected, the lowest
potential energy curve alone gives a rigorous LOWER BOUND on the
ground state energy of the system

—|f only the diagonal nonadiabatic term is included and all other

couplings are neglected, the lowest potential gives a rigorous
UPPER BOUND on the ground state energy

Wy (p) = _%(<®V|aﬁpq)1/’>aﬁp + (P aa_ﬁﬂq)w» +UL(R) 0y,



An important aside: The d-dimensional Laplacian operator is:

AT
This Laplacian operator acts on _ VE — 1 CRRd_ Op + K
the full wavefunction, so like Rrﬁf— 2
one normally does in d=3, we
can rescale the radial
wavefunction, i.e. set Y(R,Q) = a1 W(KQ) ~ (R; Q)
) A2 d—1)(d-
_vew o L (_ o K (d-D(d=3) )F(R)(M(R;Q)
RS OR? R* 4R?
Nonadiabatic Note: d= dimension of
coupling terms the relative Jacobi
—1 92 coordinates of the
[ — + Wi(R) — E]FI- + ZV#-{R)FJF =0 system, i.e. d=6 for 3
2y OR T particles, d=9 for 4
L+ 1) | particles, etc. d=3N-3
W,(R) — 5 with [, = QA +d —3)/2.
ZJ[LNR
For the 4n problem, d=9, Amin = 2 , So for this

symmetry, the centrifugal barrier at large R in the
lowest channelis ;- 5




Some results about N-body elastic scattering,
from Mehta et al., PRL 103, 153201 (2009)

' 27 -1 dh o)
osastie(d - 3N = 3) = N,(Z)" (25 ) D kvaen' = Sxardin
Kv.K'v'
and this simplifies, If a single scattering
matrix eigenchannel dominates, to:

D.Elastic(d — 3N — ) - N (J ( 4T°( d_h) )Sillzfgﬂ;

a2

This quantity is in principle an observable, which Would
be relevant for the thermalization of a gas of neutrons that
are out of thermal equilibrium, even if it is not a typical
observable that could be readily seen in any standard
nuclear physics experiment today....

And an important tool for resonance analysis on the real
energy axis is the collisional time delay

Wi -Smith dS Ej Ao «(E)
OWigner-Smith (1) _ i, 5( ) S 2p et




Next, consider the
4-fermion problem

which our group had worked on
extensively, 10-15 years ago, e.g.:

IOP PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS
J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 172001 (43pp) doi:10.1088/0953-4075/44/17/172001

The hyperspherical four-fermion problem

S T Rittenhouse' '2, J von Stecher!, J P D’Incao’, N P Mehta' 3 and
C H Greene'



Much is known about 4 spin-1/2 fermions, since this is a few-body version of
the BEC-BCS crossover problem (we treated theoretically, e.g. PRA 2009)

For the 4-neutron system, since there are no bound
subsystems, this is simplest to treat in the H-type Jacobi tree:

|_

|_11 3

ﬁff = \ — {F“1 — 1‘-},I . € 2 spin up neutrons, p-wave Y, (13)
|_.11 3

ﬁﬁ = \.‘ 5 {.‘r‘-p — T, ” . < 2 spin down neutrons, p-wave Y, (24)

2 2

P3 = of the two pairs about each

= v.-“ 41/3 ( ri+ T3 2 + Fi) < s-wave Y, in the motion
other

So we consider the L=0, S=0, even parity symmetry, which corresponds to
K=2, 4, 6, ... and the lowest channel asymptotically should have a zeroth

order potential curve A E D
JI.._I(R) _ hj K(K+ 7)+ 12 . 307’31
2 IIR* 2UR*




Considerations about the UNITARY limit (4n)
Rakshit and Blume, Phys. Rev. A 86, 062513 (2012) found
that as a-> - infinity, the hyperspherical potentials are

entirely repulsive, at |[a|>>p: :
yTEP al>>p [ Junitary (p) -~ 612
21p?
Whereas in the noninteracting limit the asymptotic
potential for two spin-up and two spin-down identical

fermions is known to be:

. . - 2

[ ]nonlnteractlng ( P) _ JOT?:.

| | | - | 2up-
Aside: This reduction of the coefficient of the asymptotic 1/p?
potential in the unitary limit is analogous to the Efimov effect...

First Conclusion: The true potential for 4n in this symmetry is
expected to be less attractive than the lower of these two
potential curves, making the possibility of a bound state for this

symmetry unlikely. a(nn)=-18.98 fm for the Argonne
AV8’ potential, similar for AV18.




Energy (MeV)

J® =0* Hyperspherical potentials for 4 fermions:
both noninteracting and unitary limit a=>-infinity

10} |

unitary limit

Unoninteracting (P) N

' Non-interacting

3072
21p?
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.20.

o
p (fm

20 50 60
a(nn)=-18.98 fm for the Argonne
AV8’ potential, similar for AV18.
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The most attractive hyperspherical potential curves for the 4n and 3n
systems, obtained using the AV8’ n-n interaction potentials (magenta)
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e —
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The converged potentials are clearly totally repulsive, with no sign
of alocal maximum that can trap probability in a resonance.




Next consider the scattering phaseshift
In the lowest 4n potential

150+
Note the very sharp rise of the
phaseshift close to zero energy, which
might lead some to interpret this as a
resonance! However, this density of
states enhancement arises (in part)
from the

C a/p® term

In the asymptotic potential

-
o
o

(8]
o

Phaseshift (degrees)

0 2 4 6 8 10
Energy (MeV)

While this causes the phaseshift to vary as EY?2 near E->0 and the D.O.S. to diverge there, it reflects
physics at very long range, and seems unlikely to cause the extra 3n or 4n events near E=0. | will
elaborate further on this point below.




A key point: The lowest energy behavior
Is controlled by the longest range
portions of the potential curve

Recall what we learned from Efimov physics,
treated in the adiabatic hyperspherical framework
(e.g. Zhen & Macek, 1988 Phys. Rev. A):

For three identical bosons, with finite particle-
particle scattering length a, the asymptotic
hyperradial potential was shown to behave for

larae lal as
, . ;12 Zeﬁ (Zeff _I_ 1) a:
uo(p) — 5 +C—
24 p p
But in the UNITARITY LIMIT,
a =2infinity, as Efimov taught Noninteracting term, losr = 3
us, the potential changes to For 3 identical bosons s
the following form:
wTvia Lot w (logt o +1) B> : :
UL ___ lteff ulleff,u 2 . 32
ug™ (p) = 2pp? <Z = f’(?f—fv> = ( —2‘;!’;3

feff.u(/eff.u + 1) - _Sé - %



Here are the values of these parameters for the 4n and 3n systems:

Our Yin and
numerical Blume,
result 2015 PRA

N(LS)T™ |l |C 15, |15,

N
—

)2 |5/2]15.22(1.275|1.2727(1)
4 1(00)0" |5 |86.68(2.027(2.0091(4)

B2 (o (log + 1 J
UO(/)) . ! ( ff( ﬁ_l_ )_I_Ci)

241 p? p?

i lott u(los u+1)R?
S, UL _ leff,ulteff u
U (p) — 2112



Implications of the attractive a/p® potential at long range

One can readily derive (e.g. using the Born approximation)
that the limiting low energy phaseshift in such a potential of

the form, ,
, h Zeﬂ-’(leff + 1) a
uo(p) — o ( = + Cp.%)
. C | 2 However, this form holds onl
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Next, consider further implications of the low
energy phaseshift behavior from the perspective
of a Wigner-Smith time delay analysis.

Q(E) = ihSdS' /dE
> 2hdd ( E) / (] | (inthe single-channel limit

Moreover, Q(E) divided by 27/ is the density of states

However, this
comes from very

We can conclude that both the 3n and 4n

: : long range
systems have a divergent density of states physics, very
proportional to 1/sqrt(E) at E>0, because ot the
the phaseshift is proportional to sqrt(E). production of the

3n or 4n state

E. P. Wigner, Lower limit for the energy derivative of the scattering phase shift, Phys. Rev. 98, 145 (1955).
F. T. Smith, Lifetime matrix in collision theory, Phys.Rev. 118, 349 (1960).



Rescaled time delays for the 3n and 4n systems,
showing that they are finite at E->0, but only when
multiplied by sqrt(E)
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Excellent threshold laws reference =  J. Phys. B: At. Mol. Opt. Phys. 33 (2000) R93-R140
H R Sadeghpour, J L Bohn, M J Cavagnero, BD Esry, | | Fabrikant, J H Macek
and ARP Rau 3o oo
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Excellent threshold laws reference =  J. Phys. B: At. Mol. Opt. Phys. 33 (2000) R93-R140

H R Sadeghpour, J L Bohn, M J Cavagnero, BD Esry, | | Fabrikant, J H Macek
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Fit to the asymptotic potentials, multiplied by 2m p?/hbar?

This is a study of the 3n,4n long range attractions, showing a very slow convergence of the potentials

30 + b/p + c/p™2 + d/p"3 +f/p"4 is the blue dashed fit

8.75+b/p +c/p”2+d/p”3 +1f/p™4 isthe blue dashed fit below

101 | » X 35
N Noninteracting (5/2)(7/2)=8.75 ’ 30: Noninteracting 5x6=30
8l o :
I = 25H
T | s |
= 6 T SQ 20t
S | 3n (3/2)- I
= | CE5 an 0+
= | Unitary limit 1.2727x2.2727~29 | 10} . o
27 (“unpartiCle”) ] Un|tary limit ~2x3=6
, 5 (“unparticle”)
3 . 01 ‘ . . . ‘ ‘ . . ‘ ‘ . . ‘ ]
or 50 100 150 200
0 50 100 150 200 250 300 o (fm)

p (fm)
These blowups of the long range rescaled potentials show

that the very long range attraction is what causes the
phaseshift rise (honresonantly)



Next, let’s investigate the energy dependent
probabillity of the 3n and 4n systems to reach small
hyperradii, which gives the energy dependence
relevant to any matrix element of an operator that
produces 3n or 4n via a short-range process

| will now argue that this analysis can be carried out
accurately using WKB to calculate the tunneling under
the centrifugal barrier down to short distances, as a
generalization of the Wigner threshold law



Aside on the interpretation of Wigner threshold law factors as a tunneling integral

Here is a brief description about how one can understand the Wigner
threshold law for any transition matrix element that is controlled by the
short-range part of the near-threshold wavefunction. Consider a general po-
tential with the following asymptotic form:

0+ 1)h?

Vi(p) = 2

,as p — 00

It is not often taught in textbooks, but the Wigner threshold law energy-
dependent factor in the transition matrix element can be viewed as the tun-

neling amplitude through the centrifugal barrier. To see this, consider the
1

WKB tunneling integral from the long range turning point at p =~ E? into
a short distance:

0+
NS l+3)?
w(ka psmall) X exp _/ k Re\/(pl?_,z) o kzdp’
P

small

1 1
R exp (—(€ + E)ln(kpsman)) x k't2



Energy or |Wavefunction|

Demonstration that this WKB argument gives the correct
Wigner threshold law for an L=2 wavefunction

Energy, Potential, and Wfn for L=2
T T T T T T T T

10+ . .
Radial wavefunction

0.100+

0.010 \

0.001 energy 1
‘ |Psi[L=2,k,r=0.5]| versus k, threshold behavior k-*'/2
_ 0010

107, Centrifugal potential (L=2)

0 20 40 60 80 100 120 140 ool Power law k°/2

r : Exact (sph Bessel) =
WKB tunneling

For this d-wave example, we i
confirm that both the exact
spherical Bessel solution AND the 0E
WKB tunneling calculation agree \
on the Wigner threshold law 1076 -
energy dependence at low energy, :
namely Psi ~ k(t+1/2)

1077

0.01 0.05 0.10 0.50 1



101

The most attractive hyperspherical potential curves for the 4n and 3n
systems, obtained using the AV8’ n-n interaction potentials (magenta)
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The converged potentials are clearly totally repulsive, with no sign
of alocal maximum that can trap probability in a resonance.
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Checking the expected threshold behavior of a transition matrix element involving
the 3-neutron 1- final state wavefunction as a function of the relative energy

Note that if the final state wavefunction at short range is controlled by the

outermost classical turning point at R ~
varies slowly with &, then we can define an effective energy-dependent thresh-
old law exponent ~ in 1) o k7, using the formula:

d

v(k) = k—1n (Y(k, psman))

dk

N
o

Expected Values: Noninteracting 6/2=3, Unitarity ~1.7727

EeHJFl/z
k

and if that turning point

Analysis is based on the

following tunneling integral
with our hyperspherical

potential curves

2uU(p
¢(k psmall X exp / Re\/ H
Psmall

<expected threshold exponent 3 very close
to threshold (nhon-interacting exponent)

Again, we expect the energy dependence of any short range transition
matrix element to a final state with /. to look like:

10 15 2.0 25 3.0
Energy (MeV)

Crg ooxt B kQZeff-i-l — Egeﬂ+1/2
eff

expected unitary exponent ~1.77 very close
to threshold (unitarity limit, Hammer & Son
PNAS suggest that ~1.77 should be the
observable threshold exponent for the 3n
system in 1- symmetry)

(L)
§
P2

— k2dp



4n 0" Effective Threshold Exponent

Checking the expected threshold behavior of a transition matrix element involving
the 4-neutron 0+ final state wavefunction as a function of the relative energy

Note that if the final state wavefunction at short range is controlled by the
outermost classical turning point at R ~ w and if that turning point
varies slowly with &, then we can define an effective energy-dependent thresh-
old law exponent ~ in 1) o k7, using the formula:

d

’Y(k) ~ k@ In (w(ka psmall))

Expected Values: Noninteracting 11/2=>5.5, Unitarity ~2.51

5.5
5.0/
4.5[
4.0/
3.5

3.0

""" ] €expectedthreshold exponent 5.5 very
close to threshold (hon-interacting exponent)

Again, we expect the energy dependence of any short range transition
matrix element to a final state with f.g to look like:

Ty init OC k2befitl = [l t1/2

expected unitary exponent ~2.51 very close
; to threshold (unitarity limit, Hammer & Son
----- e e e I PNAS state that ~2.5 t0 2.6 should be the

2.85 o

0.5 1.0 1.5 2.0 2.5 3.0 observable threshold exponent)
Energy (MeV)



Summary of our 3n and 4n studies

Basically the theory prediction looks very similar for the 3n and 4n systems, based on our
adiabatic hyperspherical quantitative study:

1.

2.

3.

There is clearly no possibility of a 3n or 4n resonance, based on our current
understanding of the neutron-neutron interaction potential

There is an enhancement of the density of states at low energy, for both the 3n and 4n
systems, but this is associated with very long range physics, and it seems unlikely to
explain any excess low energy events as are seen in the 4n experiments

Any short range matrix transition matrix element reaching the final state hyperradial
potentials that we have calculated does obey the expected Wigner threshold law, but it
holds only over a very small energy range, less than or about 0.1 MeV.

Our analysis of the energy dependent exponent of a transition matrix element (or short
range wavefunction) shows that over 0.1 - 2 MeV, it varies with energy in the range
between the non-interacting exponent and the unitary limiting exponent, which we can
predict quantitatively for the symmetries we have studied. (And this too shows no
resonant behavior for the 3n or 4n system.)



Pushing towards 5-particle adiabatic hyperspherical calculations

1. Alpha particle + 2, 3, or 4 neutrons (recent arXiv preprint)

2. The five boson recombination problem (unpublished and preliminary)



Energy [MeV]

Energy [MeV]

Moving to neutron rich helium isotopes, namely ®*He, “He, and 8He

Preprint: see arXiv: 2407.17668, M. Higgins & CHG

%He in two symmetries, showing
generally good adiabaticity

5 0

-10L

8He in 0" symmetry, showing stronger
nonadiabatic channel coupling around p=10 fm

10}

Energy [MeV]

10k | ]
0 ) 10 15 20 25 30
p [fm]

FIG. 9. The lowest few adiabatic potential curves for the
"He + 4n system in the (L7,S)J" = (0,0)07 symmetry.
The solid curves are the adiabatic potentials and the dashed
curves are the effective potentials, which includes the diag-
onal second—derivative coupling term. Only the lowest two
effective potentials are shown here.
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Further advances in the five body problem using the adiabatic
hyperspherical representation for bound state properties and collisional
dynamics:

THE FIVE IDENTICAL BOSON PROBLEM

~1.91r0<as<-0.91rg | A+A+A+A+A ground state
potential curve at many
scattering lengths where
there are no fewer than 5 or
6 particles that can bind

This is close to the region
studied in the 5-body
recombination experiment
of Rudi Grimm’s group,
namely New Journal of

Physics 15 (2013) 043040,
Zenesini et al



How Efimov physics extends to more than 3 particles. This figure shows
the schematic entrance channel potential curve expected for N
particles at negative 2-body scattering length, From Mehta et al., 2009
PRL

WIR)
| Fegion | Region 11

o, (et1/2)? |
2unR? |

Collision Energy E
-E TTTTTTT TTTTTm T ---_-_ TTTTTTTTTT T T H -_-_-_-_---_R
R:ﬁl\/ﬁz crfal Ry  N—body Channel

(N=1)1+1 Channel

FIG. 1 (color online). A schematic representation of the
N-boson hyperradial potential curves is shown. When a meta-
stable N-boson state crosses the collision energy threshold at
E = 0, N-body recombination into a lower channel with ¥ — 1
atoms bound plus one free atom is resonantly enhanced.



But before we could actually calculate the rate of 4-body recombination
in an ultracold gas, we had to develop some scattering theory:

PRL 103, 153201 (2009)

A general theoretical description of N-body recombination

N. P. Mehta,!:? Seth T. Rittenhouse,! J. P. D’Incao,! J. von Stecher,! and Chris H. Greene!

! Department of Physics and JILA, University of Colorado, Boulder, OO 80509
“Grinnell College, Department of Physics, Grinnell, IA 50112
(Dated: March 24, 2009)

We present a formula for the cross section and event rate constant describing recombination of
N particles in terms of general S-matrix elements. Chur result immediately vields the generahzed
Wigner threshold scaling for the recombination of N bosons. We find that four-boson recombination
1= resonantly enhanced by the presence of metastable states in the entrance channel. Hence, recom-
bination mnto a trimer-atom channel could be an effective mechamsm for the formation of Efimov

trimers.

And here it is, THE FORMULA for N-body
recombination, i.e. for the process:
A+A+A+... +. A > A A or A ,TA+A +...etc.

2k (20 \ T ((3N — 3)/2) 5% 3

o+
i

Ky =

un A\ k 2 (3N —3)/2




J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 101002 (5pp) doi: 10.1088/0953-4075/43/10/101002

FAST TRACK COMMUNICATION

Weakly bound cluster states of Efimov

MORE THAN 4 BOSONS: von Stecher’s J. Phys. B
CharaCter article in 2010: combined study using correlated

Gaussians, and diffusion Monte Carlo
Javier von Stecher
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Javier von Stecher - and 2010 JPB and 2011 PRL

TABLE I: Energies at unitarity and scattering-length ratios that char-
acterize weakly bound cluster states. The scattering length ratios can
be transformed to an absolute scale using 1/(roasp) ~ 0.64.

N|Ex/Es |any/aiy 1y | N |En /B3
41 4.66(4) 0.42(1) 9 1 49.9(6)
0.60(1) 10| 60.2(6)
0.71(1) 11| 70.1(7)
0.78(1) 121 79.9(3)
0.82(1) 13| 88.0(7)

e

046(] ) 065(2) 073(] ) are latest Five- and Six-Body Rem‘unances Tied to an Efimov ”_[jrimer B
revised/improved values from von Stecher, Javier von Stecher - PRL 107, 200402 (2011)

Remarkable prediction, that all larger cluster
resonances are determined once the 3-body
parameter is known!



How to tackle 5-body recombination for 5 free bosonic
atoms with pairwise additive forces?

l.e. the reaction A+tA+A+A+A> A;+A, or A,+A or...

Start with the time-independent Schroedinger equation:

2 p,2 p2 pz pz
_ 1 2 3 4 3
H= + + == =k

2m; 2m; 2ms 2my 2ms

+ W(ri2) + Wiris) + Wirwa) + V(s ) + V(ras ) + V(rag) + V(ras ) + W(raa ) + W(rss ) + W(ras)

After eliminating the center-of-mass degree of
freedom, we're left with a 12-dimensional PDE to
solve, which can be reduced to a mere 9
dimensions for J=0 states after going to the body
frame.



Resonant five-body recombination in an ultracold gas of bosonic atoms

Mulliken-
style o
potential &
energy X
versus
hyperradius k
)

R for 5 free .|

Cs atoms / -
(solid red) or I
harmonicall

y frapped NJP 2013

(< Alessandro Zenesini'i, Bo Huang', Martin Berninger!. Stefan
Besler!, Hanns-Christoph Nagerl', Francesca Ferlaino!, Rudolf

Grimm'?, Chris H Greene?®§, Javier von Stecher®*



Our article with the Innsbruck group: finally published by the New Journal

of Physics, accepted for publication about 1 year later!
Woohoo! _ . -
Resonant Five-Body Recombination in an Ultracold Gas

A Zenesini. B. Huang, M. Berminger. S. Besler, H-C. Nigerl. F. Ferlaino, and E. Grimm
Institut fiir Experimentalphysik and Zentrum fiir Quantenphysik, Universitat Innsbruck, and
Institut filr Quantenopiik und Quanteninformation, Osterreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria

Chns H. Greene and J. von Stecher®

ity of Colorado, Boulder, CO 80309, US4

0.8 o | w10.2012)

°
ot 3
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NN

Uy -172
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New Journal of Physics 15 (2013) 043040

FIG. 1. (color online) N-body scenario in the region of negative two-
body scattering length a. The lower panel shows the N-body binding
energles as a function of the inverse scattering length E%"_ — (k)% /m
15 the trimer binding energy for resonant interaction. The dotted,
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count for the experimental observations. Remarkably. the res-
onance position as_ = 0.64(2)ay _ is in agreement with the
theoretical predictions 0.65(1)a4__ [37. 38]. However. quan-
titatively. the experimental values for Ls are about 15 times
larger than the calculated ones. To account for this. we intro-
duce a corresponding scaling factor. We find that this devia-
tion may be explained by a small error in the WKB phase ¥ of

about 10%. which remains in a realistic uncertainty range of
our theory.

NJP 15 (2013) 043040,
Zenesini et al.

-500 -1000 -1600 -2000
scattering length a (a )

FIG. 4. (color online) Calculated and measured fraction of loss atoms
from an atomic sample of initially 5 x 10* atoms at a temperature of
80nkK after a hold time of 100 ms. The red dotted line corresponds

to the losses predicted for three-body recombmation only, while the
dashed green line and the blue solid line include also contributions

from four- and five bodv recombination. as quantified in thas work. A



A Schematic qualitative

¢ Bou hyperspherical
S - potential curve for 5
“ bosons at negative
= — scattering length,
- T | Riraw “Mulliken style”
S e
= 0.003f s o
| w | NJP 15 (2013) 043040,
B Zenesini et al.
AT w
0020 T T T : : - 10
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FIG. S1: (color online) (a) The lowest two eigenenergies of a trapped five body system are shown as functions of
the scattering length for different trapping frequencies. Different colors represent different trapping frequencies. The
combination of these states essentially describes the energy of the five-body state in the inner region of the potential
E,.0i(a) (the diagonal curve). Here E,. = h?/(mr?2) and ry is the characteristic range of the two-body model
potential that can be tuned to obtain the five-body resonance (i.e. rq ~ 1.7rydw where r,4., is the van der Waals
length). (b) The near-threshold behavior of A. The fitting of the lowest energy points leads implies that A oc AE®.
The lowest three points lead to b = 5.004 as expected from the known threshold behavior [4].
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< Separating the different N-body contributions
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FIG. 3. (color online) Effective four- (a) and five-body recombina-
tion rates (b). The green dashed curve and the blue solid line fol-
low the theoretical model for Ly and L+, respectively, with additional
scaling factor for Ls; see text. The error bars include the statistical
uncertainties from the fitting routine, the temperature and the trap

frequencies.

Position of the
predicted 4-body
resonance and
the 5-body
resonance is in

_— agreement with

experiment!
Kewl!

NJP 15 (2013) 043040,
Zenesini et al.

A combined theoretical and
experimental study of 5-body
recombination



Conclusion:

Progress is underway to extend the predictive and
analysis power of the adiabatic hyperspherical
representation to handle more particles and more
complex few-particle scenarios in both nuclear and
atomic systems.

Thanks for listening!
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