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Strategy of the adiabatic hyperspherical representation:  convert the 
partial differential Schroedinger equation into an infinite set of coupled 
ordinary differential equations:

To solve: 

Now solve the fixed-R Schroedinger
equation, for eigenvalues Un(R):

Next expand the desired solution             
into the complete set of eigenfunctions

And the original T.I.S.Eqn. is transformed into the following set (coupled ODEs) 
which can be truncated on physical grounds, with the eigenvalues 
interpretable as adiabatic potential curves, in the Born-Oppenheimer sense.

First, we set:

(in order to
eliminate 1st

order 
derivatives in 
K.E. operator)



Different calculation methods of the adiabatic hyperspherical potential curves 
and nonadiabatic couplings:

Method 1.  Analytical treatment (3 bodies with zero-range interactions), using 
the hyperangular Green’s function  (Rittenhouse, Mehta, CHG, PRA 82 022706

Green’s functions and the adiabatic hyperspherical method For a system of N particles, xi denote the d = 3N − 3 Cartesian 
components needed to specify the relative positions of the N 
particles  (with  d-1 hyperangles here)



Some basic properties of adiabatic potential energy curves in hyperspherical coordinates:

1. The hyperangular operator 2 is Hermitian and has R-independent eigenvalues, which means that the diagonal 
potentials Un(R) for the NONINTERACTING system (V=0) are all known analytically,

e.g. for 3 bosons, the lowest 
value of         is 3/2, whereas 
for 4 bosons, the lowest value 
of          is 3.  This is important 
for discerning threshold laws 
of transition matrix elements 
to and/or from the N-body 
continuum states, as in 
recombination, i.e. for any 
short range dominated 
process, 

2. For every possible fragmentation threshold of the 
N-body system allowed for the symmetry being 
considered, there must be at least one potential 
curve converging to its energy at R → infinity

3. When an Efimov effect is present, at least one 
potential curve converging to E=0 is negative, 
meaning that 

4. For s-wave -function interactions in 3D 
with finite a, the asymptotic potentials 
converging to the N-body continuum have the 
form:



So the phaseshift is linear in k for ALL nonzero values of the centrifugal potential, 
but any transition matrix element obeys the ordinary Wigner threshold law, namely:



Some other interesting special cases for 3 or 4 fermions :

N, L (spin state)                                             (unitarity)

3,0+, (spins up,up,up)           15/2            1.00 (Vp infinite scatt. Vol.)

3,1+, (spins up,up,up)             7/2            1.00 (Vp infinite)

3,1-,  (spins up,up,up)             9/2           0.011 (Vp infinite)

3,1+, (up,up,down)                  7/2              1.00 (Vp infinite) 

3,1- , (up,up,down)                  5/2              0.00 (Vp infinite) 

4,0+, (up,up,down,down)         5                  2.01  (a infinite)

Recall that in the ordinary Efimov effect for 3 bosons or 3 different spin 

fermions, the following values hold:

= 3/2                           (unitarity, a) = -1/2 + i (approximately)

i.e.                           ~ -5/4

Yu-Hsin Chen & CHG, PRA 2022 (3 fermions, p-wave unitarity)

PRA 2022 Michael Higgins 3 or 4 fermions



Unitarity reductions of the 

centrifugal barrier constant le
for Fermionic 3-body systems 

of different symmetries

Yu-Hsin Chen & CHG

arXiv:2408.08993

Universal trimers with p-wave 

interactions and the faux-

Efimov effect

See also 2022 PRA

For some symmetries with p-

wave interactions at unitarity 

a faux-Efimov effect, 

discussed in my tutorial 

lectures at some length



Nonresonant Density of States Enhancement 

for Few-Neutron Systems 
Chris Greene, Purdue University 

with Michael Higgins, Alejandro Kievsky and Michele Viviani 

(on the 3n and 4n systems)

and on the 3 unitary fermions, 

with Yu-Hsin Chen 



Outline for Few Neutrons

1.Theoretical search for a low energy bound or 

resonant trineutron or tetraneutron, and 

connections with Efimov physics and 

universality, see PRL 125, 052501 (2020)

Further elaborations were subsequently 

published in:  Phys. Rev. C 103, 024004 (2021)



Results from the 3n, 4n experimental literature:

Expt:  a 4n candidate published in  PRL 116, 052501 (2016), Kisamori et 

al.

conclusion:  its energy is  

And a Nature News & Views by Bertulani & Zelevinsky, > 2000 page views

Surplus of 4n events 

are observed at low 

energy!

This experiment measured the reaction 4He+8He→ 8Be+4n

…. And observed a surplus of very low energy events, interpreted as a 

tetraneutron resonance (or even a bound state couldn’t be ruled out)



And, in a more recent experiment, Physics Letters B 824(2022)136799:

Reaction studied:  7Li+7Li→10C+4n

“…Therefore, we favor the 

interpretation that this peak 

corresponds to 10C in the first 

excited state at 3.354 MeV and 

a tetraneutron with a binding 

energy of +0.42 ±0.16MeV.”



Here we report on

the observation of a 

resonance-like structure near 

threshold in the four-neutron

system that is consistent with 

a quasi-bound tetraneutron 

state existing for a

very short time.

Nature 2022



Shortly after the publication of this experimental result by 

Kisamori et al. in 2016, many nuclear theory groups tackled 

this problem with renewed excitement, trying to figure out 

whether our current understanding of nuclear forces is 

consistent with the possibility of a 4-neutron resonance 

existing at low energy below 1 MeV.

The answers from the strongest theory groups?

Hiyama , Lazauskas, Carbonell, Kamimura :  NO resonance can exist

Gandolfi, Hammer, Klos, Lynn, Schwenk :  a resonance could exist

Fossez, Rotureau, Michel, Ploszajczak :  a resonance should exist

Shirokov,Papadimitriou,Mazur,Mazur, Roth,Vary : a resonance should exist

Deltuva:  NO resonance can exist

Intrigued by this controversy, Michael Higgins, myself, 

and the Pisa group of Alejandro Kievsky and Michele 

Viviani decided to address this problem using our 

adiabatic hyperspherical toolkit – it took us 3 years!



Fossez, Rotureau, Michel, Ploszajczak Phys. Rev. Lett. 119, 032501 (2017)

conclusion:  while the energy (4n) …may be compatible with expt… its width must 

be larger than the reported upper limit ➔ (probably) …reaction process too short to 

form a nucleus

Gandolfi, Hammer, Klos, Lynn, Schwenk Phys. Rev. Lett. 118, 232501 2017

conclusion:  a three-neutron resonance exists below a four-neutron

resonance in nature and is potentially measurable

First: a brief review of recent 3n, 4n theory

Theory: Hiyama, Lazauskas, Carbonell, Kamimura 2016 Phys. Rev. C.

conclusion:  “…a remarkably attractive 3N force would be required…”

Shirokov,Papadimitriou,Mazur,Mazur, Roth,Vary Phys. Rev. Lett. 117, 182502 

(2016) conclusion: 4n resonance, E=0.8 MeV, 

NO!

YES!

YES!

YES!

Tetraneutron: Rigorous continuum calculation, A.Deltuva in Physics Letters B 

782(2018) 238–241 “... This indicates the absence of an observable 4n resonance...”
NO!

Tri-neutron: Three-neutron resonance study using transition operators A. Deltuva, 

PRC 97, 034001 (2018)  “...There are no physically observable three-neutron resonant 

states consistent with presently accepted interaction models”

NO!



Our main theoretical tool:  formulate 

the problem in hyperspherical 

coordinates, treating the hyperradius

R adiabatically

The hyperradius R (squared) is a 

coordinate proportional to total moment 

of inertia of any N-particle system, i.e.:

Here ri is the distance of the i-th particle 

from the center-of-mass.  All other 

coordinates of the system are 3N-4 

hyperangles.

And then the rest of the 

problem comes down to 

calculating energy levels as a 

function of R, which we call 

“hyperspherical potential 

curves”, and their mutual 

couplings, which can then be 

used to compute bound state 

and resonance properties, 

scattering and 

photoabsorption behavior, 

nonperturbatively

This follows the formulation of the N-body problem in 

the adiabatic hyperspherical representation, as 

pioneered by Macek, Fano, Lin, Klar, and others

also 2



Strategy of the adiabatic hyperspherical representation:  FOR ANY NUMBER OF 

PARTICLES, convert the partial differential Schroedinger equation into an 

infinite set of coupled ordinary differential equations:

To solve: 

First solve the fixed-R 

Schroedinger equation, for 

eigenvalues Un(R):

Next expand the desired solution             

into the complete set of hyperangle

eigenfunctions with unknowns F(R)

And the original T.I.S.Eqn. is transformed into the following 

set which can be truncated on physical grounds, with the 

eigenvalues interpretable as adiabatic potential curves, in 

the Born-Oppenheimer sense.



• Various methods can be used to compute the needed 

potential curves and couplings:  diagonalization in a 

basis set of hyperspherical harmonics, or correlated 

Gaussians, or Monte Carlo techniques, etc.

• A theorem exists about the truncation to a single 

potential curve, i.e. the adiabatic approximation, namely:

Notes



Note: d= dimension of 

the relative Jacobi 

coordinates of the 

system, i.e. d=6 for 3 

particles, d=9 for 4 

particles, etc. d=3N-3

For the 4n problem, d=9,                       , so for this 

symmetry, the centrifugal barrier at large R in the 

lowest channel is  

An important aside:  The d-dimensional Laplacian operator is:

This Laplacian operator acts on 

the full wavefunction, so like 

one normally does in d=3, we 

can rescale the radial 

wavefunction, i.e. set 

Nonadiabatic 

coupling terms



Some results about N-body elastic scattering, 

from Mehta et al., PRL 103, 153201 (2009)

and this simplifies, if a single scattering 

matrix eigenchannel dominates, to: 

This quantity is in principle an observable, which would 

be relevant for the thermalization of a gas of neutrons that 

are out of thermal equilibrium, even if it is not a typical 

observable that could be readily seen in any standard 

nuclear physics experiment today....

And an important tool for resonance analysis on the real 

energy axis is the collisional time delay:



Next, consider the 

4-fermion problem 

which our group had worked on 

extensively, 10-15 years ago, e.g.:



For the 4-neutron system, since there are no bound 

subsystems, this is simplest to treat in the H-type Jacobi tree:

 2 spin up neutrons, p-wave Y1m(13)

 2 spin down neutrons, p-wave Y1m’ (24)

 s-wave Y00 in the motion 

of the two pairs about each 

other

So we consider the L=0, S=0, even parity symmetry, which corresponds to 

K=2, 4, 6, … and the lowest channel asymptotically should have a zeroth 

order potential curve

Much is known about 4 spin-1/2 fermions, since this is a few-body version of 

the BEC-BCS crossover problem (we treated theoretically, e.g. PRA 2009)



Rakshit and Blume, Phys. Rev. A 86, 062513 (2012) found 

that as a-> - infinity, the hyperspherical potentials are 

entirely repulsive, at |a|>> :

First Conclusion:  The true potential for 4n in this symmetry is 

expected to be less attractive than the lower of these two 

potential curves, making the possibility of a bound state for this 

symmetry unlikely.

Whereas in the noninteracting limit the asymptotic 

potential for two spin-up and two spin-down identical 

fermions is known to be:

Considerations about the UNITARY limit (4n)

Aside:  This reduction of the coefficient of the asymptotic 12

potential in the unitary limit is analogous to the Efimov effect...

a(nn)=-18.98 fm for the Argonne 

AV8’ potential, similar for AV18.

~~



J =0+ Hyperspherical potentials for 4 fermions:  

both noninteracting and unitary limit a→-infinity

Non-interacting 

unitary limit 

a(nn)=-18.98 fm for the Argonne 

AV8’ potential, similar for AV18.



0+

The most attractive hyperspherical potential curves for the 4n and 3n 

systems, obtained using the AV8’ n-n interaction potentials (magenta)

The converged potentials are clearly totally repulsive, with no sign 

of a local maximum that can trap probability in a resonance.

HH expansion, unconverged at 

large r



Next consider the scattering phaseshift

in the lowest 4n potential

Note the very sharp rise of the 

phaseshift close to zero energy, which 

might lead some to interpret this as a 

resonance!  However, this density of 

states enhancement arises (in part) 

from the 

C a/3 term 

in the asymptotic potential

While this causes the phaseshift to vary as E1/2 near E→0 and the D.O.S. to diverge there, it reflects

physics at very long range, and seems unlikely to cause the extra 3n or 4n events near E=0.  I will 

elaborate further on this point below.



A key point:  The lowest energy behavior 

is controlled by the longest range

portions of the potential curve
Recall what we learned from Efimov physics, 

treated in the adiabatic hyperspherical framework 

(e.g. Zhen & Macek, 1988 Phys. Rev. A):

For three identical bosons, with finite particle-

particle scattering length a, the asymptotic 

hyperradial potential was shown to behave for 

large |a| as

Noninteracting term, 

For 3 identical bosons

But in the UNITARITY LIMIT, 

a→infinity, as Efimov taught 

us, the potential changes to 

the following form:



Here are the values of these parameters for the 4n and 3n systems:

Our 

numerical 

result

Yin and 

Blume, 

2015 PRA



Implications of the attractive a/ potential at long range

One can readily derive (e.g. using the Born approximation) 

that the limiting low energy phaseshift in such a potential of 

the form,

is:

4n 0+

3n 3/2
-

However, this form holds only 

out to about E ~ 0.2 – 0.3 MeV




Next, consider further implications of the low 

energy phaseshift behavior from the perspective 

of a Wigner-Smith time delay analysis.

→
(in the single-channel limit)

Moreover, Q(E) divided by is the density of states

We can conclude that both the 3n and 4n 

systems have a divergent density of states 

proportional to 1/sqrt(E) at E→0, because 

the phaseshift is proportional to sqrt(E).

E. P. Wigner, Lower limit for the energy derivative of the scattering phase shift, Phys. Rev. 98, 145 (1955).
F. T. Smith, Lifetime matrix in collision theory, Phys.Rev. 118, 349 (1960).

However, this 

comes from very 

long range

physics, very 

likely not 

controlling the 

production of the 

3n or 4n state



4n 0+

4n 0+

3n 3/2
-

3n 3/2
-

Rescaled time delays for the 3n and 4n systems, 

showing that they are finite at E→0, but only when 

multiplied by sqrt(E)



Long range density of states peaks obtained after convolving with 1 MeV resolution function

J. Phys. B: At. Mol. Opt. Phys. 33 (2000) R93–R140

H R Sadeghpour, J L Bohn, M J Cavagnero, B D Esry, I I Fabrikant, J H Macek 
and A R P Rau

Excellent threshold laws reference  →

4n 0+

Elastic 4n 0+ 
phaseshift
versus sqrt(E)

Elastic 4n 0+ 
phaseshift versus 
E(MeV)



Long range density of states peaks obtained after convolving with 1 MeV resolution function

J. Phys. B: At. Mol. Opt. Phys. 33 (2000) R93–R140

H R Sadeghpour, J L Bohn, M J Cavagnero, B D Esry, I I Fabrikant, J H Macek 
and A R P Rau

Excellent threshold laws reference  →

3n  3/2- 4n 0+

Elastic 4n 0+ 
phaseshift
versus sqrt(E)

Elastic 4n 0+ 
phaseshift versus 
E(MeV)

Very similar 3n 
and 4n behavior



Fit to the asymptotic potentials, multiplied by    2m 2/hbar2

8.75 + b/ + c/^2 + d/^3 + f/^4  is the blue dashed fit below

Noninteracting (5/2)(7/2)=8.75

Unitary limit  1.2727 x 2.2727 ~ 2.9 
(“unparticle”)

This is a study of the 3n,4n long range attractions, showing a very slow convergence of the potentials 

3n   (3/2)-
3n   (3/2)-

4n   0+

Unitary limit  ~2x3=6
(“unparticle”)

Noninteracting 5x6=30

30 + b/ + c/^2 + d/^3 + f/^4  is the blue dashed fit

These blowups of the long range rescaled potentials show 
that the very long range attraction is what causes the 
phaseshift rise (nonresonantly)



Next, let’s investigate the energy dependent 

probability of the 3n and 4n systems to reach small 

hyperradii, which gives the energy dependence 

relevant to any matrix element of an operator that 

produces 3n or 4n via a short-range process

I will now argue that this analysis can be carried out 

accurately using WKB to calculate the tunneling under 

the centrifugal barrier down to short distances, as a 

generalization of the Wigner threshold law



Aside on the interpretation of Wigner threshold law factors as a tunneling integral



Demonstration that this WKB argument gives the correct 
Wigner threshold law for an L=2 wavefunction

For this d-wave example, we 
confirm that both the exact 

spherical Bessel solution AND the 
WKB tunneling calculation agree 

on the Wigner threshold law 
energy dependence at low energy, 

namely Psi ~ k(L+1/2)

Centrifugal potential (L=2)

energy

Radial wavefunction 

Power law k5/2

Exact (sph Bessel)
WKB tunneling



0+

The most attractive hyperspherical potential curves for the 4n and 3n 

systems, obtained using the AV8’ n-n interaction potentials (magenta)

The converged potentials are clearly totally repulsive, with no sign 

of a local maximum that can trap probability in a resonance.

HH expansion, unconverged at 

large r



Checking the expected threshold behavior of a transition matrix element involving 
the 3-neutron 1- final state wavefunction as a function of the relative energy

expected threshold exponent 3 very close 
to threshold (non-interacting exponent)

expected unitary exponent ~1.77 very close 
to threshold (unitarity limit, Hammer & Son 
PNAS suggest that ~1.77 should be the 
observable threshold exponent for the 3n 
system in 1- symmetry)

Analysis is based on the 
following tunneling integral 

with our hyperspherical 
potential curves



Checking the expected threshold behavior of a transition matrix element involving 
the 4-neutron 0+ final state wavefunction as a function of the relative energy

expected threshold exponent 5.5 very 
close to threshold (non-interacting exponent)

expected unitary exponent ~2.51 very close 
to threshold (unitarity limit, Hammer & Son 
PNAS state that ~2.5 to 2.6 should be the 
observable threshold exponent)



Summary of our 3n and 4n studies

Basically the theory prediction looks very similar for the 3n and 4n systems, based on our 
adiabatic hyperspherical quantitative study:

1. There is clearly no possibility of a 3n or 4n resonance, based on our current 
understanding of the neutron-neutron interaction potential

2. There is an enhancement of the density of states at low energy, for both the 3n and 4n 
systems, but this is associated with very long range physics, and it seems unlikely to 
explain any excess low energy events as are seen in the 4n experiments

3. Any short range matrix transition matrix element reaching the final state hyperradial
potentials that we have calculated does obey the expected Wigner threshold law, but it 
holds only over a very small energy range, less than or about 0.1 MeV.  

4. Our analysis of the energy dependent exponent of a transition matrix element (or short 
range wavefunction) shows that over 0.1 – 2 MeV, it varies with energy in the range 
between the non-interacting exponent and the unitary limiting exponent, which we can 
predict quantitatively for the symmetries we have studied.  (And this too shows no 
resonant behavior for the 3n or 4n system.)



Pushing towards 5-particle adiabatic hyperspherical calculations

1. Alpha particle + 2, 3, or 4 neutrons  (recent arXiv preprint)

2. The five boson recombination problem (unpublished and preliminary)



Moving to neutron rich helium isotopes, namely 6He, 7He, and 8He

Preprint:  see  arXiv: 2407.17668, M. Higgins & CHG 
6He in two symmetries, showing 
generally good adiabaticity

8He in 0+ symmetry, showing stronger 
nonadiabatic channel coupling around =10 fm



Further advances in the five body problem using the adiabatic 
hyperspherical representation for bound state properties and collisional 

dynamics:

THE FIVE IDENTICAL BOSON PROBLEM

A+A+A+A+A ground state
potential curve at many
scattering lengths where
there are no fewer than 5 or 
6 particles that can bind

This is close to the region 
studied in the 5-body 
recombination experiment 
of Rudi Grimm’s group, 
namely New Journal of 
Physics 15 (2013) 043040, 
Zenesini et al 



How Efimov physics extends to more than 3 particles.  This figure shows 

the schematic entrance channel potential curve expected for N 

particles at negative 2-body scattering length, From Mehta et al., 2009 
PRL



But before we could actually calculate the rate of 4-body recombination 

in an ultracold gas, we had to develop some scattering theory:

And here it is, THE FORMULA for N-body 

recombination, i.e. for the process:  

A+A+A+….+..A → AN-1+A  or AN-2+A+A +…etc.



MORE THAN 4 BOSONS: von Stecher’s J. Phys. B 

article in 2010: combined study using correlated 

Gaussians, and diffusion Monte Carlo

Clusters predicted 

up to N=13.

→increasing attraction→



Javier von Stecher - and 2010 JPB and 2011 PRL

0.46(1)        0.65(2)   0.73(1) are latest 

revised/improved values from von Stecher, 

Remarkable prediction, that all larger cluster 
resonances are determined once the 3-body 

parameter is known!



H=

How to tackle 5-body recombination for 5 free bosonic 

atoms with pairwise additive forces?

i.e. the reaction A+A+A+A+A→ A3+A2 or A4+A or…

Start with the time-independent Schroedinger equation:

After eliminating the center-of-mass degree of 

freedom, we’re left with a 12-dimensional PDE to 

solve, which can be reduced to a mere 9 

dimensions for J=0 states after going to the body 
frame.



Mulliken-

style 

potential 

energy 

versus 

hyperradius 

R for 5 free 

Cs atoms 

(solid red) or 

harmonicall

y trapped 

(dashed)
NJP 2013



Our article with the Innsbruck group: finally published by the New Journal 

of Physics, accepted for publication about 1 year later!

Woohoo!

New Journal of Physics 15 (2013) 043040



NJP 15 (2013) 043040, 

Zenesini et al. 



Schematic qualitative 

hyperspherical 

potential curve for 5 

bosons at negative 

scattering length, 

“Mulliken style”

Recomb. threshold

NJP 15 (2013) 043040, 

Zenesini et al. 



4-body recomb 

only

5-body recomb 

only

Position of the 

predicted 4-body 

resonance and 

the 5-body 

resonance is in 

agreement with 

experiment!  

Kewl!

NJP 15 (2013) 043040, 

Zenesini et al. 

A combined theoretical and 

experimental study of 5-body

recombination

 Separating the different N-body contributions



Conclusion:

Progress is underway to extend the predictive and 
analysis power of the adiabatic hyperspherical 
representation to handle more particles and more 
complex few-particle scenarios in both nuclear and 
atomic systems.

Thanks for listening!
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