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Molecule-like structure and threshold rule
Introduction — threshold rule?

 cluster in nucleiα

  - molecule-like structure appears near threshold
Threshold rule:

H. Horiuchi, K. Ikeda, Y. Suzuki, PTPS 55, 89 (1972)

94 H. Horiuchi, K. Ikeda and Y. Suzuki 

4a-chain structure are the cases with the well-grown molecule-like structures, 
all of which are the quasi-bound states with the larger excitation energy 
than the threshold energy for the decays into the relevant subunit nuclei. 
The positive parity bands in 160 and 20Ne are the cases with the smaller 
energy than the threshold energy. For the case of 160, the deviation of 
the excitation energy, 8Eo (=Eo Eth), is about 1.1 MeV and for the case 
of 20Ne about 4.7 MeV. When we compare these deviations with the 
separation energy of an alpha-particle fron1 the ground states with the shell 
structure (about 7 MeV), the deviation for 160 is not considered to be so 
large but the deviation for 20Ne to be appreciably large. Thus it has been 
pointed out that the structure in the ground band of 20Ne has a certain 
transient character from a di-molecular structure (a-0) to a shell-like 
structure. 

The other observable quantity which has the strong correlation with 
the degree of the polarization or of the dissolution has been pointed out to 
be the gap energy between two band heads with the negative and positive 
parities: when the gap energy is small the molecule-like structure 1s very 
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Fig. l·l. Diagram of the subunit of the posslble molecule-like structures as the function of 
the energy and the mass number, where the threshold energy for the decay into subunit 
nuclei is written in the parentheses. (The energies of the multi-molecular structures with 
the linear configuration are predicted in §§4 and 5 for sorrie cases listed in this figure.) 

 at Library of R
esearch R

eactor Institute, K
yoto U

niversity on A
ugust 13, 2015

http://ptps.oxfordjournals.org/
D

ow
nloaded from

 

- cluster formation near  thresholdsnα

- e.g.) ,  Hoyle state , …8Be ∼ αα 12C ∼ ααα

- molecule-like structure

Hadronic molecules

- Exotic hadrons near two-hadron thresholds
- e.g.) , , …Tcc ∼ D0D*+ X(3872) ∼ D0D̄*0

F.K. Guo, et al.,  RMP 90, 015004 (2018)

c d̄D*+ūcD0
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Questions on threshold rule
Mechanism which leads to threshold rule

Introduction — threshold rule?

- low-energy universality (  for )|a0 | → ∞ B → 0

- spatially spread wavefunction —> molecule

—> Next talk by Kinugawa-san

- : Coulomb interaction?Zα = 2

ppnn

ppnnα
α

Typical example: 8Be ∼ αα

-  MeV, above thresholdER ∼ + 0.1

- wavefunction of unstable resonance?

E

threshold

resonance

bound state

E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006);
P. Naidon, S. Endo, Rept. Prog. Phys. 80, 056001 (2017)



5

Introduction — threshold rule?
Compositeness

Near-threshold bound states

Near-threshold resonances 

Summary

Contents

Contents

T. Kinugawa, T. Hyodo, arXiv:2403.12635 [hep-ph]

T. Hyodo, PRC90, 055208 (2014);
T. Kinugawa, T. Hyodo, PRC 109, 045205 (2024)

S. Weinberg, Phys. Rev. 137, B672 (1965);
T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

E

threshold

resonance

bound state

or

https://inspirehep.net/literature/2769909
https://inspirehep.net/literature/1305435
https://inspirehep.net/literature/2641489
https://inspirehep.net/literature/1256957


6

EFT setup
EFT with bare state  + scattering states ϕ ψ1ψ2

T. Kinugawa, T. Hyodo, PRC 109, 045205 (2024)

- eigenstates of free/full Hamiltonian

Compositeness

<latexit sha1_base64="uEGvBlx/+mZfMM9tJj8rvSZClGo="></latexit>
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ϕ
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0
ν0

ψ1 ψ2

Hfree |B0⟩ = ν0 |B0⟩, Hfree | p⟩ =
p2

2μ
| p⟩,

-  scattering amplitude: effective range expansionψ1ψ2

f(p) = −
μ
2π

1
v(E)−1 − G(E)

=
1

− 1
a0

+ re

2 p2 − ip

Hfree Hint

E

0

−B

(Hfree + Hint) |B⟩ = − B |B⟩

Hfree + Hint

https://inspirehep.net/literature/2641489
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Compositeness and elementairty
Compositeness

- Normalization of  + completeness of free eigenstates|B⟩

⟨B |B⟩ = 1, 1 = |B0⟩⟨B0 | + ∫
dp

(2π)3
| p⟩⟨p |

-  : real and nonnegative —> interpreted as probabilityZ, X

“elementarity” compositeness

- Definition
1 = Z + X, Z ≡ |⟨B0 |B⟩ |2 , X ≡ ∫

dp
(2π)3

|⟨p |B⟩ |2

- Closed-form expressions

X =
G′￼(E)

[v−1(E)]′￼− G′￼(E)
E=−B

= 1 −
1

1 − Σ′￼(E)
E=−B

Compositeness: quantitative measure of internal structure
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Compositeness  of stable bound stateX
S. Weinberg, Phys. Rev. 137, B672 (1965);
T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

Weak-binding relation

|d⟩ = X |NN⟩ + Z |others⟩, X + Z = 1, 0 ≤ X ≤ 1

Compositeness

N N

d

Problem: a0 = 5.42 fm, R = 4.32 fm ⇒ X = 1.68 > 1?

a0 = R { 2X
1 + X

+ 𝒪 ( Rtyp

R )}, R =
1
2μB

radius of bound statescattering length

range of interaction

-  gives violation of universality X < 1 a0 = R

- for shallow bound state , observables R ≫ Rtyp X ← (a0, B)

https://inspirehep.net/literature/1256957
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Uncertainty estimation with  term𝒪(Rtyp /R)

Uncertainty and interpretation

Y. Kamiya, T. Hyodo, PTEP2017, 023D02 (2017)

Xu =
a0 /R + ξ

2 − a0 /R − ξ
, Xl =

a0 /R − ξ
2 − a0 /R + ξ

, ξ =
Rtyp

R

0

1

X

Xl

Xu

Compositeness

- exclude region outside 0 ≤ X ≤ 1

Interpretation (with finite range correction)

Rtyp = max{Rint, Reff}

T. Kinugawa, T. Hyodo, PRC 106, 015205 (2022)

TOMONA KINUGAWA AND TETSUO HYODO PHYSICAL REVIEW C 106, 015205 (2022)

FIG. 11. Comparison of the bound states with the distribution of
the magnitude of the uncertainty Ē in the effective range model in
the R̃int-r̃e plane. The legends are the same as Fig. 5.

however, keep in mind that the applicable region in Fig. 10
is the result of the specific model (the effective range model)
and the applicable boundaries are model dependent.

For the discussion of the meaningful estimation, we plot
the parameters in Table III in comparison with the magnitude
of the uncertainty Ē in R̃int-r̃e plane in Fig. 11. Because all
the states are contained in the region Ē ! 0.5, we expect that
meaningful estimations of the compositeness are possible for
these states.

C. Estimation of compositeness

We now estimate the compositeness X of the bound states
listed in Table II. We summarize the estimated uncertainties
ξeff = |re|/R and ξint = Rint/R in Table IV. Here, we set Reff =
|re| assuming that the coefficients of the higher order terms in
the effective range expansion are of natural size. We then show
the estimated compositeness with the uncertainty band with
ξeff [X (ξeff )] and ξint [X (ξint )] in Table IV. In the last column
we also show Rtyp in the improved weak-binding relation (28).

We can see that the central values of the compositeness
Xc are larger than unity except for X (3872) in Table IV.
This is because the radius R is smaller than the scattering
length a0 in these states. As we discussed in Sec. III A, Xc is
larger than unity for a0 > R. The relation between a0 and R is
also approximately determined by the sign of re. Neglecting
the O(k4) terms in the effective range expansion, we obtain

TABLE IV. The uncertainties ξeff , ξint , the estimated compos-
iteness X , and the length scale Rtyp in the improved weak-binding
relation. X (ξeff ) [X (ξint )] stands for X estimated with ξeff (ξint).

Bound state ξeff ξint X (ξeff ) X (ξint ) Rtyp

d 0.405 0.331 1.68+3.18
−0.943 1.68+2.14

−0.824 Reff

X (3872) 0.160 0.0428 0.743+0.282
−0.213 0.743+0.0675

−0.0626 Reff

D∗
s0(2317) 0.0949 0.341 1.61+0.369

−0.288 1.61+2.09
−0.804 Rint

Ds1(2460) 0.192 0.345 1.12+0.540
−0.358 1.12+1.22

−0.566 Rint

N" dibaryon 0.277 0.149 1.40+1.20
−0.600 1.40+0.523

−0.364 Reff

"" dibaryon 0.337 0.252 1.56+1.95
−0.773 1.56+1.22

−0.626 Reff
3
#H 0.157 0.295 1.35+0.532

−0.366 1.35+1.25
−0.605 Rint

4He dimer 0.0757 0.0560 1.08+0.177
−0.152 1.08+0.128

−0.114 Reff

TABLE V. The compositeness X consis-
tent with the definition (36) estimated by the
improved weak-binding relation.

Bound state Compositeness X

d 0.74 ! X ! 1
X (3872) 0.53 ! X ! 1
D∗

s0(2317) 0.81 ! X ! 1
Ds1(2460) 0.55 ! X ! 1
N" dibaryon 0.80 ! X ! 1
"" dibaryon 0.79 ! X ! 1
3
#H 0.74 ! X ! 1
4He dimer 0.93 ! X ! 1

Eq. (22):

a0 = R
1

−re/(2R) + 1
. (71)

Because R > 0, we obtain a0 > R for positive re > 0, and
a0 < R for negative re < 0 from this equation. In fact, in
Table II, these relations are satisfied except for D∗

s0(2317)
and Ds1(2460) with the small effective range. In summary,
the central value of the compositeness is larger than unity for
a0 > R, which is expected to be realized with positive re > 0
when relation (71) approximately holds.

One may wonder that the central value Xc > 1 contradicts
with the definition of the compositeness, 0 ! X ! 1. In fact,
this problem for the deuteron partly motivates the works
in Refs. [27–29]. From our viewpoint, this problem can be
avoided by considering the uncertainty ξ as in Eq. (36) as
discussed below.

Focusing on the N" dibaryon, we find that the lower limit
of the compositeness estimated by ξint is larger than unity
[Xl (ξint ) = 1.04] from Table IV. Hence, the exact value of
the compositeness of the N" dibaryon is not contained in the
uncertainty band of X (ξint ), and we cannot perform the mean-
ingful estimation of the compositeness of the N" dibaryon
with the previous weak-binding relation (Rtyp = Rint). In fact,
we have seen that the N" dibaryon exists near the boundary
of the applicable region of the previous weak-binding relation
in the effective range model as shown in Fig. 10.

In the improved weak-binding relation with Eq. (27), we
calculate compositeness with the uncertainty band as X (ξeff )
[X (ξint )] for Rtyp = Reff (Rtyp = Rint). From the last column,
we see that X (ξint ) is adopted for the states D∗

s0(2317),
Ds1(2460), and 3

#H, and X (ξeff ) for other states. By taking the
region consistent with the definition 0 ! X ! 1 in Eq. (36),
we finally determine the compositeness X as shown in
Table V.

These results (0.5 ! X ! 1) indicate that the composite
component gives the largest fraction in the wavefunction for
all states. In particular, the 4He dimer is an almost purely com-
posite state with a small fraction of the other components (!
7%). However, the compositeness of X (3872) and Ds1(2460)
can be as low as ≈0.5, which is the boundary of the composite
dominance. Therefore, it is expected that the other compo-
nents would play a substantial role in these states. We find that

015205-14

Near-threshold bound states are mostly composite

-  of deuteron is reasonableX

-  in all cases studiedX ≥ 0.5

-  of hadrons, nuclei, and atomsX

https://inspirehep.net/literature/1474407
https://inspirehep.net/literature/2083152
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- wavefunction of  state is not normalizable ( )B = 0 |a0 | → ∞

compositeness theorem and intuitive picture
Near-threshold bound states

r

u0(r,0)

∝ const .

r

∝ 1/rℓ

uℓ(r; 0)

Compositeness theorem:  in  limitX = 1 B → 0
T. Hyodo, PRC90, 055208 (2014)

1 = |⟨B0 |B⟩ |2 + ∫
dp

(2π)3
|⟨p |B⟩ |2 = |⟨B0 |B⟩ |2 + ∫ dr |Ψ(r) |2

- compositeness in coordinate space  

1 = |⟨B0 |B⟩ |2 + ∫
dp

(2π)3
|⟨p |B⟩ |2 = |⟨B0 |B⟩ |2 + ∫ dr |Ψ(r) |21 = |⟨B0 |B⟩ |2 + ∫

dp
(2π)3

|⟨p |B⟩ |2 = |⟨B0 |B⟩ |2 + ∫ dr |Ψ(r) |2

→ ∞|⟨B0 |B⟩ |2

∫ dr |Ψ(r) |2 → 0 ⇒ X = 1

https://inspirehep.net/literature/1305435
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Finite binding case
Elementarity of bound state with small but finite B

Near-threshold bound states

Z =
1

1 − Σ′￼(−B)

-  is fixedlimB→0 Z = 0

B

Z
1

0
-  for small  (composite)Z ≪ 1 B

How probable is such fine tuning?

For sufficiently small ,   for small g2
0 B /g2

0 ∼ 𝒪(1) B

—> sizable  with small  by fine tuning of parameter Z B g2
0

small  g2
0

<latexit sha1_base64="uEGvBlx/+mZfMM9tJj8rvSZClGo="></latexit>
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 dependence of B Z
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1 + Cg2
0 / B

∼
B

Cg2
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Quantifying fine tuning
Probability distribution of  of square-well potentiala0

E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

Near-threshold bound states

a0 /r0

268 E. Braaten, H.-W. Hammer / Physics Reports 428 (2006) 259 –390

r0
r

V

−V0

Fig. 1. Attractive square well potential with range r0 and depth V0.
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Fig. 2. Two-body observables for the attractive square-well potential. The scattering length a (solid curve), the effective range rs (dashed curve), and
the inverse binding wave numbers (mE2/22)−1/2 for the first two bound states (dots and squares) in units of r0 are shown as functions of !0r0.
The vertical dotted lines are the critical values where a diverges.

The natural low-energy length scale is ℓ ≈ r0. We will treat the depth V0 as a parameter that can be varied to adjust the
scattering length a. The scattering length and effective range are

a = r0

[
1 − tan(!0r0)

!0r0

]
, (25a)

rs = r0

[

1 − r2
0

3a2 − 1

!2
0ar0

]

, (25b)

where !0 = (mV 0/22)1/2. The binding energies E2 > 0 satisfy the transcendental equation

(!2
0 − !2)1/2 cot[(!2

0 − !2)1/2] = −!, (26)

where ! = (mE2/22)1/2 is the binding wave number. In Fig. 2, we show the scattering length a, the effective
range rs , and the inverse binding wave number 1/! for the first two bound states as functions of the dimensionless

E. Braaten, H.-W. Hammer / Physics Reports 428 (2006) 259 –390 269

0 2
0

0.4

0.8

1.2

1.6

r 0
 P

(a
)

a/r0

1

Fig. 3. Probability distribution for the scattering length a for the attractive square-well potential with !0r0 = 10.

variable !0r0. For most values of !0r0, the variables a, rs , and 1/! all have magnitudes of order r0. The scattering
length is unnaturally large only in narrow intervals of !0r0 near the critical values 1

2", 3
2", 5

2", . . ., which are shown
as vertical dotted lines in Fig. 2. The critical values can be reached by tuning either the depth V0 or the range r0 of the
potential. Wherever a is unnaturally large and positive, there is a bound state with unnaturally small binding energy
given approximately by Eq. (2). Note that the effective range has the natural value rs = r0 at the critical values of !0r0
where a diverges. The effective range rs is unnaturally large only near those values of !0r0 where a vanishes, but a2rs
has a natural value at those points.

If !0r0?1, we can use the expression in Eq. (25a) to make a simple probabilistic statement about the scattering length.
A probability distribution for V0 or r0 will generate a probability distribution for a. If !0r0?", a small fractional variation
in V0 or r0 can generate a variation in the argument of tan(!0r0) that extends over several periods. Any probability
distribution for V0 or r0 that is approximately constant over intervals of !0r0 of length " will give an approximately
uniform distribution for !0r0 mod ". The resulting probability distribution for a is

P(a)da = 1

(a − r0)
2 + 1/!2

0

da

"!0
. (27)

The distribution is shown in Fig. 3. It peaks at a = r0 and its full width at half maximum is 2/!0. Thus the probability
is concentrated near a = r0 and it is sharply peaked if !0r0?1.

For atoms interacting through a short-range potential with a 1/r6 van der Waals tail as in Eq. (21), the natural
low-energy length scale is the van der Waals length ℓvdW given in Eq. (23). To illustrate the point that ℓvdW is the
natural low-energy length scale, we consider a potential that has a hard core of radius r0 and decreases like −C6/r6

for r > r0 as illustrated in Fig. 4:

V (r) = + ∞, r < r0, (28a)

= − C6

r6 , r > r0. (28b)

The scattering length and the effective range can be calculated analytically [13,14]:

a = #2( 3
4 )

"
(1 − tan $)ℓvdW, (29a)

rs = 2"

3#2( 3
4 )

1 + tan2$

(1 − tan $)2 ℓvdW, (29b)

Fine-tuning can be quantified by parameter dependence

r0 rshallow 
: a0/r0 ≫ 1

r0 rtypical 
: a0/r0 ∼ 1
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Structure of bound state
Compositeness  in the allowed  region X ν0

Near-threshold bound states

1

 [dimensionless]ν0/Etyp

 [d
im

en
si

on
le

ss
]

X

規格化：黒が Bnat、赤が0.01Bnat、緑が0.25Bnat

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

- Typical bound state  : mostly elementary B = Etyp

B = Etyp

B = 0.01Etyp

- Shallow bound state  : mostly composite B = 0.01Etyp

ψ1 ψ2ϕ

Shallow elementary state <— only with fine tuning = unlikely

T. Kinugawa, T. Hyodo, PRC 109, 045205 (2024)

https://inspirehep.net/literature/2641489
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Resonances in effective range expansion
Two poles in effective range expansion (ERE)

Near-threshold resonances

E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006);
T. Hyodo, PRL111, 132002 (2013);
T. Kinugawa, T. Hyodo, arXiv:2403.12635 [hep-ph]

k± =
i
re

± 1
re

2re

a0
− 1 + i0+

length 1=a from!1 toþ1 in Fig. 1(a). The primary pole
moves from the bound state region to the virtual state
region, and merges with the conjugate pole at the double
root k! ¼ kþ ¼ i=re. The pole then moves off the imagi-
nary k axis while acquiring a real part, and eventually turns
into a resonance. We note that the double root should lie in
the negative region of the imaginary k axis, in order to have
a resonance (k! in the fourth quadrant). The properties of
the poles are summarized in Table I.

The scattering length and the effective range can be
expressed by the pole positions as

a ¼ kþ þ k!

ikþk!
; re ¼

2i

kþ þ k!
: (3)

In the present case, because kþ þ k! (kþk!) is purely
imaginary (real), both re and a are real numbers. The
scattering amplitude is then written as fðkÞ ¼ ðkþ þ
k!Þ=½iðk! kþÞðk! k!Þ' so the residue of the pole is
obtained as

lim
k!k(

ðk! k(ÞfðkÞ ¼ kþ þ k!

iðk( ! k)Þ : (4)

Again, this is a real number. For the bound and virtual
states, the residue of the primary pole k! is determined by
the position of the conjugate pole kþ and vice versa.
In the case of the resonances, kþ ¼ !ðk!Þ*, so the residue
is solely determined by the position of the pole. Note
that in general the residue of the resonance pole is a
complex number, which is independent of the pole
position. Equation (4) suggests that the properties of the

near-threshold resonances are constrained through the
threshold quantities.
Next we turn to the compositeness. For a weakly

bound state, the scattering length and the effective range
are related to the field renormalization constant as [4]
a ¼ !2ð1! ZÞR=ð2! ZÞ and re ¼ !ZR=ð1! ZÞ with
R ¼ ð2!BÞ!1=2, the reduced mass !, and the binding
energy B. The field renormalization constant Z is defined
as the overlap of the physical bound state with the elemen-
tary contribution other than the scattering state. By elim-
inating R, Z is given by

Z ¼ 1!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! 1

1þ a=ð2reÞ

s
¼ 2k!

k! ! kþ
; (5)

where we choose the sign of the square root so that the
expression matches with the normalization 0< Z< 1 for
the bound states. The quantity X + 1! Z is called com-
positeness, which measures the two-body molecule com-
ponent in the bound state.
Now we consider the 1=a dependence of Z with a fixed

re < 0 [Fig. 1(b)]. It is instructive to consider X ¼ 1! Z,
instead of Z itself. The compositeness X is real and positive
for 1=a <!2=re. In addition, for the bound states (nega-
tive 1=a < 0), the compositeness is always normalized as
0<X < 1. We obtain a pure composite state X ¼ 1 in the
unitary limit 1=a ¼ 0. Beyond the unitary limit, the bound
state turns into a virtual state and the compositeness
exceeds unity. At the double root 1=a ¼ !2=re,X diverges
and for 1=a >!2=re, X becomes purely imaginary.
Interestingly, however, its magnitude is normalized within
0< jXj< 1 for the resonance case!1=re < 1=a. Here we
define a new quantity

!X +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!1þ 1

1þ a=ð2reÞ

s
;

which is real and positive for 1=a >!2=re, and properly
normalized for resonances (0< !X < 1). The normalization
is given at !X ¼ 1 at k! ¼ !1=re þ i=re with 1=a ¼
!1=re. The corresponding eigenenergy is

E! ¼ ðk!Þ2
2!

¼ ! i

!r2e
: (6)

This is a special state whose mass is located at the two-
body threshold and the width is determined solely by the
effective range; the width is small (large) for a large (small)
jrej. !X ¼ 0 is realized when Re k! ! þ1 (1=a ! þ1).

(a) (b)

FIG. 1 (color online). Trajectories of the pole positions k! and
kþ (a), and the field renormalization constant Z (b) increasing
the inverse scattering length 1=a for a fixed negative effective
range re < 0. Inverted triangles, squares, circles, crosses, and
triangles correspond to 1=a ¼ !1, 0, !2=re, !1=re, and þ1,
respectively. Solid (dashed) line with filled (empty) symbols
stands for k! (kþ).

TABLE I. Classification of the properties of the poles in the effective range expansion for re < 0.

Inverse scattering length 1=a < 0 0< 1=a <!2=re !2=re < 1=a <!1=re !1=re < 1=a

Primary pole Bound state Virtual state Virtual state with width Resonance
Conjugate pole Virtual state Virtual state Anti-virtual state with width Anti-resonance
Compositeness 0<X < 1 1<X 1< !X 0< !X < 1

PRL 111, 132002 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

27 SEPTEMBER 2013

132002-2

k+

k−

- pole positions  <—> k± (a0, re)

Resonance solution ( ) re < 0

1
|re |

2re

a0
− 1 ≥

1
|re |

, ⇒
re

a0
≥ 1, ⇒ |a0 | ≤ |re |

- energy  <—> ER = MR − i ΓR
2 (a0, re)

- resonance with  : not only  but also |k− | → 0 |a0 | → ∞ |re | → ∞

https://inspirehep.net/literature/1232512
https://inspirehep.net/literature/2769909
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Compositeness of resonances
Compositeness: pure imaginary  <— weak-binding relation

Near-threshold resonances

X =
1

1 − 2re

a0

= − i tan(θk), k− = |k− |eiθk

Resonance state: complex eigenenergy

H |R⟩ = ER |R⟩, ER = MR − i
ΓR

2
∈ ℂ

- complex  and : probability?Z X

Z ≡ ⟨R̃ |B0⟩⟨B0 |R⟩ ∈ ℂ, X ≡ ∫
dp

(2π)3
⟨R̃ | p⟩⟨p |R⟩ ∈ ℂ

⟨R |H = ⟨R |E*R , ⟨R̃ |H = ⟨R̃ |ER

- normalization by Gamow vector

⟨R |R⟩ → ∞, ⟨R̃ |R⟩ = 1
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New interpretation scheme
Complex matrix element <—> uncertain nature of resonances

Near-threshold resonances

𝒳 =
(α − 1) |X | − α |Z | + α

2α − 1

𝒵 =
(α − 1) |Z | − α |X | + α

2α − 1

Introduce three probabilities 𝒳 + 𝒴 + 𝒵 = 1

T. Berggren, PLB33, 547 (1970)

T. Kinugawa, T. Hyodo, arXiv:2403.12635 [hep-ph]

𝒴 =
|X | + |Z | − 1

2α − 1
uncertain

certainly finding composite

certainly finding elementary

- If   —>  : non-interpretable state Γ > Re E 𝒳 < 0

α =
5 − 1 + 10 − 4 5

2 ≈ 1.1318

- Choice of parameter : exclude large width resonanceα

https://inspirehep.net/literature/2769909
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Compositeness of resonances
 as functions of argument of eigenenergy𝒳, 𝒴, 𝒵

Near-threshold resonances

Near-threshold resonances are not composite dominant

- Resonances are not composite dominant ( )𝒵 ≳ 0.8

4
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FIG. 2. The probabilities X , Y, and Z as functions of the
argument of the eigenenergy �✓E . The solid line stands for
X , dashed for Y, and dotted for Z. The shaded area is the
non-interpretable region determined by the condition (12).

region in Fig. 2. Note that X is positive for |✓E | <
| arctan(�1/2)|.

We focus on the interpretable region. In the ✓E ! 0
limit, X = Y = 0 and Z = 1 because the complex X
goes to zero as seen in Eq. (7). The pole on the real axis
with ✓E ! 0 represents the state which does not couple
to the scattering states (� = 0). Because the coupling
to the scattering states induces the compositeness of the
state, it is natural to obtain the completely elementary
state with Z = 1 (e.g. the bare state). The value of Z
decreases from Z = 1 with the increase of |✓E |, but the
resonance in the interpretable region remains elementary
dominant with Z & 0.8. We therefore conclude that near-
threshold resonances with narrow width (small |✓E |) are
elementary dominant in accordance with the model anal-
ysis in Ref. [12]. This result shows that the property of
near-threshold resonances is completely opposite to near-
threshold bound states which are shown to be composite
dominant by the low-energy universality [12, 44, 50].

Comparison with previous works: Finally, we compare
the present results with the previous works by focusing
on the elementarity. In Refs. [12, 26, 27, 31, 35], the
fraction of the elementary component is defined using the
scattering length a0 and effective range re, or complex
compositeness X as follows:

Z̄ = 1�

s����
1

1� 2re/a0

���� (Ref. [12]), (14)

Z̃KH =
1� |X|+ |1�X|

2
(Refs. [26, 31]), (15)

Z̃ =
|1�X|

|X|+ |1�X|
(Ref. [27]), (16)

Z̄A = 1�

s
1

1 + |2re/a0|
(Ref. [35]). (17)

These quantities reduce to the original Z for bound
states. Let us compare these quantities with Z for a
given set of a0 and re, where we express X by a0 and
re using the relation (6). We vary 1/a0 from a positive

value to a sufficiently negative one for a fixed negative re
so that a bound state represented by the pole k� turns
into a virtual state and then into a resonance [12]. Be-
cause the fractions of the elementary component (14),
(15), (16), (17) and Z in Eq. (11) depend only on the
ratio of re to a0, we plot these quantities as functions of
�2re/a0 in Fig. 3 (a).

Before considering resonances, we discuss bound and
virtual states. In the �2re/a0 > 0 region where a
bound state appears, all the results become identical
by definition. In contrast, for a virtual state in the
�1 < �2re/a0 < 0 region, the fractions are quite dif-
ferent from each other. The virtual state is interpreted
as composite dominant with Z̃KH, Z̃, and Z̄A. In par-
ticular, with the prescription in Refs. [26, 31], Z̃KH = 0
always holds for the virtual state, i.e., completely com-
posite X̃KH = 1. However, Z̄ and Z are always nega-
tive for the virtual state. In our study, the virtual state
is classified as non-interpretable, in agreement with the
negative norm of the virtual state which indicates its un-
physical nature [61].

A resonance is represented by the pole in the
�2re/a0 < �2 region in Fig. 3 (a). The non-shaded
area (�2re/a0 . �18) corresponds to the interpretable
region where the resonance has a small decay width. To
focus on the resonance, in Fig. 3 (b), we plot the fractions
as functions of the argument of the eigenenergy �✓E in
the whole fourth quadrant (0 < �✓E  ⇡/2). We see
that all results converge to unity in the ✓E ! 0 (� ! 0)
limit. Furthermore, in the interpretable region, all ele-
mentarities are larger than 0.7. Hence, it is concluded
that near-threshold resonances with a narrow width are
elementary dominant with any prescriptions considered
here.

Summary: In this work, we examine the internal struc-
ture of near-threshold s-wave resonances through quan-
titative analysis. Initially, we demonstrate that near-
threshold s-wave resonances do not follow the low-energy
universality using the ERE. This is attributed to the large
negative effective range characteristic of near-threshold
resonances.

To analyze the internal structure of resonances,
we then introduce a novel probabilistic interpretation
scheme for their complex compositeness. The key idea is
to incorporate the probability of the uncertain identifica-
tion in addition to the compositeness and elementarity.
Additionally, in this framework, a discernible criterion to
exclude unphysical states is inherently embedded. This
is our solution related to the first issue.

To address the second issue, using our interpretation
scheme, we present quantitative evidence demonstrat-
ing that near-threshold resonances with a narrow decay
width exhibit elementary dominance. The elementary
dominance of resonances holds regardless of the origin,
because the compositeness and elementarity are deter-
mined within the ERE. This observation can be regarded

ER = |ER |eiθE

<— consistent with large negative re

( )Γ > Re E
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Compositeness : probability of finding

Bound state exactly at threshold

Near threshold bound states

Near-threshold resonances

X

Summary

Summary

- completely composite   X = 1

- in general, composite X ∼ 1

- non-composite, 𝒳 ≲ 0.2

T. Kinugawa, T. Hyodo, PRC 109, 045205 (2024)

T. Hyodo, PRC90, 055208 (2014);

T. Kinugawa, T. Hyodo, arXiv:2403.12635 [hep-ph]

E

threshold

resonance

bound state

https://inspirehep.net/literature/2641489
https://inspirehep.net/literature/1305435
https://inspirehep.net/literature/2769909

