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Motivation

+ Feshbach resonances: resonance created by a bound state coupled
to a continuum.

« Ultracold atoms: very successful tool to control the interactions between ultra-
cold atoms for more than 20 years.

« Hadron physics: hadron resonances near thresholds

 We know how to make models of Feshbach resonances, but
what is physical and what is arbitrary in these models?

« Can we learn about the bound state causing the resonance?



Fano-Feshbach resonances

Principle: two particles can
be in different internal
states (channels) which are
coupled to each other.
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Two-body observables
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Two-body observables 8o = Jim A

1) Scattering phase shift:
I'(E)/2
E—F,—AE)
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Important question

From these observables, can we determine the details?
- Energy ~, of the bare bound state ?
- Scattering length <. in the closed channel ?

Answer: no.

For resonances described by a Quantum Defect Theory (QDT)

such as
- All the atomic Feshbach resonances

- Hadron resonances very close to a threshold.



Quantum Defect Theory (QDT)

Van der Waals interaction Short-range (Bethe-Peierls BC)
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Quantum Defect Theory (ODT)

» The QDT gives explicit expressions for
the shift and width:
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» The expressions should be
renormalised in terms of observables



Renormalised Quantum Defect Theory
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Renormalised Quantum Defect Theory

Energy of an open-channel bound state
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Renormalised Quantum Defect Theory

Energy of an open-channel bound state
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Renormalised Quantum Defect Theory
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Renormalised Quantum Defect Theory
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Renormalised Quantum Defect Theory
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Renormalised Quantum Defect Theory
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Renormalised Quantum Defect Theory
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Renormalised Quantum Defect Theory
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Renormalised Quantum Defect Theory
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Renormalised Quantum Defect Theory
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Renormalised Quantum Defect Theory
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Renormalised Quantum Defect Theory

The shift A, and the bare
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Preliminary conclusion

Closed-channel parameters (bare energy =, scattering
length <) are undetermined by the standard two-body
observables (scattering phase shifts, binding energy).

But one can also probe short-range two-body observables
using a third particle :

- Three-body observables

- Photoassociation signal (probing with photon)



short-range observables

Open-channel wave function
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short-range observables

Resonance for 6Li atoms near 834 G
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Conclusion

The renormalised quantum defect theory gives a simple description
of Feshbach resonances.

Standard two-body observables depend only the open channel!

(bare energy I, scattering length « )
can be revealed by short-range two-body observables. They may
affect three-body observables!

arXiv:2403.14962
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