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Motivation

• Feshbach resonances: resonance created by a bound state coupled 

to a continuum. 

• We know how to make models of Feshbach resonances, but 

what is physical and what is arbitrary in these models?

• Can we learn about the bound state causing the resonance?

• Ultracold atoms: very successful tool to control the interactions between ultra-

cold atoms for more than 20 years.

• Hadron physics: hadron resonances near thresholds
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Two-body observables
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Two-body observables

1) Scattering phase shift:

𝜂 = 𝜂𝑜 − arctan
Γ(𝐸)/2

𝐸 − 𝐸𝑏 − Δ(𝐸) 

2) Dressed bound-state energy:

𝐸 = 𝐸𝑏 + Δ(𝐸)

      Resonance shift Δ and width Γ:

Δ − 𝑖Γ/2 = ⟨𝜙𝑏|𝐻𝑐𝑜

1

𝐸 − 𝐻𝑜𝑜
𝐻𝑜𝑐|𝜙𝑏⟩

𝐸𝑏

Resonance of 40K atoms near 202 G

Feshbach 

molecule

𝛾 = lim
𝑘→0

Γ

2𝑘
Δ0 = lim

𝑘→0
Δ

Should depend on the closed-channel details!

𝑎 = 𝑎𝑜 −
𝛾

𝐸𝑏 + Δ0



Important question

From these observables, can we determine the closed-channel details?

 - Energy 𝐸𝑏 of the bare bound state ?

 - Scattering length 𝑎𝑐 in the closed channel ?

Answer: no.

For resonances described by a Quantum Defect Theory (QDT)

such as

- All the atomic Feshbach resonances

- Hadron resonances very close to a threshold.



Quantum Defect Theory (QDT)
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Quantum Defect Theory (QDT)

The QDT gives explicit expressions for 

the shift and width:

The expressions should be 

renormalised in terms of observables

Γ(𝐸)

2
= ⋯

Δ 𝐸 = ⋯

QDT theorist



Renormalised Quantum Defect Theory

𝐸 = 𝐸𝑏 + Δ 𝐸
Energy of an open-channel bound state

Scattering length 𝑎𝑜

𝐸
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𝜆 𝐸 − 𝑎𝑜
E.g.

ZR : 𝐸 = −
ℏ2

𝑚𝑎2

Van der Waals

dressed bare shift
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Resonance of 40K atoms near 202 G

𝐸𝑏𝐸𝑏 𝐸𝑏

Δ0Δ0 Δ0

Δ0 =
𝛾

𝑎𝑜 − 𝑎𝑐

The shift Δ0 and the bare 

energy 𝐸𝑏 cannot be 

determined! (unobservable) 

Δ0 = 𝛾
𝑎𝑜 − ത𝑎

ത𝑎2 + 𝑎𝑜 − ത𝑎 2

Expression for the shift Δ0:

Chin, Grimm, Julienne, Tiesinga

Rev. Mod. Phys. 82, 1225 (2010)

incorrect

Naidon & Pricoupenko

Phys. Rev. A 100, 042710 (2019)

𝐸 = 𝐸𝑏 + Δ 𝐸

Δ0 +
𝛾

𝜆 𝐸 − 𝑎𝑜

Closed-channel

scattering length



Preliminary conclusion

Closed-channel parameters (bare energy 𝐸𝑏, scattering 

length 𝑎𝑐) are undetermined by the standard two-body 

observables (scattering phase shifts, binding energy).

But one can also probe short-range two-body observables 

using a third particle :

- Three-body observables

- Photoassociation signal (probing with photon)
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𝐴in 𝜑𝑎𝑜
(𝑟) 𝐴o𝑢𝑡 𝜑𝑎(𝑟) 𝐴in

𝐴out
=

𝑎 − 𝑎𝑐

𝑎𝑜 − 𝑎𝑐

Can be probed by 

photoassociation



Short-range observables

𝐴in

𝐴out
=

𝑎 − 𝑎𝑐

𝑎𝑜 − 𝑎𝑐
Magnetic field (G)

𝐴in

𝐴out

Resonance for 6Li atoms near 834 G

Coupled-channel calculation 

(5 hyperfine channels)

Formula  
𝑎−𝑎𝑐

𝑎𝑜−𝑎𝑐



Conclusion

The renormalised quantum defect theory gives a simple description 

of Feshbach resonances.

Standard two-body observables depend only the open channel!

Closed-channel parameters (bare energy 𝐸𝑏, scattering length 𝑎𝑐)  

can be revealed by short-range two-body observables. They may 

affect three-body observables!

arXiv:2403.14962
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