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In a three-nucleon system, the AGS Born term: Z,3(¢q,¢"; E) is given by

- |
Z08(q, 4 E) = 0ag < Vo|Va—=——Vs|t5 > 1
3'(qq ) b} ‘r l E_ fIO #3'?1‘3 ( )
Toens T

T gugij T g(_ g,"f
- O(‘v{ — —2 ‘5(10" - . 2
24 T q?/2p — p?/2v HOap ¢+ 0% 2)
with o = 2u(p®/2v - E), for E <p*/2v (3)

and o0 = 2u(-eg—E), for eg<-E=|E|, with p?/2v = —ep (4)

@D o has an energy dependent structure.
@ 0=0is a Coulomb-like potential

@ 0< o is satisfied in the following regions
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The Fourier transformation of Eq.(2) is given by

o~ 0T e—\/Zu(—EBHEUT'

FI2) = Vo 8.r) " = Voo, ) for 5 <[E|, (9
o~ 0T e—\/Zu(pz/Qu—E)r

F{Z} = Vola, ,7) = Vola, B,r) - for E<p*/2v. (6)

Above discussion concerns the case () < o2, (or F < —ep and 0 < E) in Eq.(5) and
Eq.(6). While, for the case of 0* < 0 (or —eg < E < 0), if we take 0 = Filo| and
a = *i|al, then a relation ac = |ac| = |a||o| is obtained.
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Therefore, 0<|o| is satisfied for all the energy region.

—ar e~ lallalr/|al

}—{Z} - Vﬁ(anﬁar)e , - Vg(ﬂf,ﬁ,’f') ’r/\a\

The Euler integral of the second kind of Eq.(7) is rewritten for the energy region
—00 < E <00, or —00 < g% < 00 by, |

. (7)

5[}'{2((1 q: E)H (v, By a,m,7) (8)

5 [ e fiesn e @

(7) Is satisfied for all the energy region
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1 | x
- a h|n1rp/0 (|’3HU|)H_2€_HJl{%(aaﬁﬁ")

e—lallal(r/lal)

bd(jallol)| (10)

i)
B - 1 1

= Qi) | e

= (e, ﬁ;n,'r)r(r I‘Ti|ﬂ|)n1 (11)
S L 12

Since V, is independent of o, therefore Q is analytically obtained

We call this formulae a “quantized general particle transfer”
potential from an atom-molecule system to a quark-gluon
system.
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with

_ ajan_ze—aa . 0 - ﬂ—ZB—ag - an_1:: F(ﬂ-—l)
7’-/0 d—/o() d(ao)/ (13)

where Vj(a, f;n,7) is the eigenvalue of operator (e, 8;n, 7). Eq.(11) is the so-called
GPT potential.

[f the momentum dependence of form factor g,, gg is very small, then Eq.(11) becomes
by omitting a, 3,

/Compare
Indecies
o~ (n=1)r/a —
Ve, Bya,n,1) = Vy(n) 5 (14)
e HT
= Vo(n) 5 for r<a (15)
an—l
— Vy(n) for a<r (16)
Tn
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Comparing Eq.(14) and Eq.(15), we obtain a quantum number n,

n=ap+1. | Comparison indecies (17)

Therefore, the “quantization is completed” by using a
pion mass m, in the hadron system,

pion gauge: a = 1/m, rvith

The quantum number is defined
by the exchange particle mass

where p is an exchange particle mass, where n = 1 gives a Coulomb-type potential
which corresponds to the quasi-two-body threshold (Q2T) with ¢ = 0 or £ = —¢p
where the right-hand (scattering) cut is started from this branch point, although the
traditional three-body calculation is started from E = 0. While n = 2 indicates one-
pion exchange threshold or the branch point of the left-hand (potential) cut, where
E =0 is the three-body break up threshold (3BBT).

Let us call the present new quantization of a particle transfer potential (or
a primitive potential) “the GPT potential” and also for this treatment

“the GPT theory”.

Therefore, we can conclude:

Electron transfer: covalent bond, zero mass transfer: ion bond
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Table 1. The GPT potential Q(r; n)a"~'/[r(r + a)"']isillustrated. The
potential properties for the longer and shorter ranges are shown with respect to
the parameter n. The potential depths V; and V" are given for the short-range
and the long-range expansion for the eigenvalue of the operator €2(r; n).

7! r<< a GPT- potential a<<r

1 Vo(1) /r Q(r; 1) /r V(1) /r

2 Vo(2) e /) /¢ Q(r; 2)a/[r(r + a)] V'e(2)a/r?

3 Vo(3) e @/ /y Q(r; 3)a®/[r(r + a)?] V'y(3)a®/r

4 Vo (4) e Cr/a /y Q(r; 9)a’/[r(r + a)’] Vie@)a®/rt

5 Vo(5) e”Ur/a) /y Q(r; 5)a*/[r(r + a)*] V'y(5)a*/r’

6 Vo(6) e~ G/ /r Q(r; 6)a’/[r(r + a)’] V' (6)a’/r°

7 Vo(7) e 6/ /¢ Q(r; 7)a®/[r(r + a)°] V'g(7)a®/r’

" Vo(n) e~ (1= Dr/a/y O(r; n)[r(;’fﬁ Vig(nya"1/r"

Pion transfer potentials
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Table 2. The GPT potential for the unphysical Riemann energy plane. By putting
n — —|n|in the original GPT potential: Q(r; n)a"~/[r(r + a)"" 11—

O(r; |n))(r + a)"171/[al"* 1] isillustrated, which corresponds to the dotted path
for the second Riemann sheet in figure 2. The potential properties for the long-
and short-ranges are shown with respect to the parameter a and n. V;(|n|) and
Vo'(|n|) are constants.

|n| r<a GPT potential a<&r

0 Vo(0) /1 Q(r; 0)[(r + a)/ar] V'0(0) /a

1 Vo(1) /1 Qr; D[(r + a)*/a’r] V'o()r/a?

2 Vo(2) /1 Q(r; 2)[(r + a)’/a’r] V'e(2)r?/a®

3 Vo(3) /1 Qr; 3)[(r + a)*/a*r] V'(3)r3/a*

B! Vo(4)/r Qr; D[(r + a)/a’r] Vi4)rt/a’

5 Vo(5)/r Q(r; 5)[(r + a)®/ar] V'o(5)r°/a®

6 Vo(6) /1 Q(r; 6)[(r + a) /a’r] V'o(6)rS/a’

7 Vo(7) /1 Q(r; 7)[(r + a)®/a®r] Vio(7)r”/a®

|H| ‘ 1»’[;,(|n|}/r ‘ Q{r; |n|) [UI;:I—W] ‘ V’ﬂ(|n|)r|"|/a|nl+l

Confinement potential
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Here, it should be stressed that the generation of the long-range potential Eq.(16)
could compete with the four fundamental interactions. Anyhow, we do have a concern
about the concept of traditional potentials starting that “a particle is the outcome of a
particle exchange”. If and only if, one could be allowed to propose a new concept that
“a (primitive) potential exists first”, and then a quantization of the potential could
generate particles and forces (or a quantized potential) which could be illustrated by
the GPT formulation where the generated particles move according to the quantum
mechanical laws. The primitive potential is not known but it could contain a lot of
fundamental characteristics where the spin and parity of the generated particle could
be obtained by the operator Q(a, 8;n,r) in Eq.(11).

Since the quantum number gives a branch point of the potential cut, therefore
the total potential is obtained by a proper sum over the quantum number n, with
TaB =Toq — T, Ty =T — T~, Tyo = T~ — Tq, 1€,

V&(Tﬂﬁ) - Z V(ﬁ:’ﬁa — 1/mﬂ?nv Tﬁ’}‘) (19)
_ - (l/mﬂ)n—l

B T;Q(ﬁm | ﬁw)f‘ﬁw(?"ﬁw+(1/mw))”‘l (20
(1/mq)" "

= Y Vo(B.yin.ra) (21)
n=2

'y (Tay + (1/myg))n— 1

However, in this paper, we will take only n = 2 for simplicity.
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Figure 2. The Riemann plane is illustrated for the hadron system, where the index number n of the GPT potential is represented for
one-pion transfer (with n = 2), two-pion transfer (with #n = 3), and the three-pion transfer (with n = 4) and so on. The number n=1
does not only indicate the Q2T, but also a massless particle transfer which is unknown particle, however it could be understood as a
particle-antiparticle pair such as 77 which is an analogy in the chemical potential for n=1 where an ionic-bond is given by the GPT
potential with e e — yy. The number n = 0 represents the 3BT but gives an unknown potential which is shown in table 2. Therefore,
the potential cut (or the left-hand cut) has some possibilities of the starting points with n =2, n =1 and n = 0, respectively. Hence, the
scattering cut (or the right-hand cut) could depend on the potential cut. In this context, the solid thickish line (A) or the solid thread
line (B) are the integral paths on the 1st Riemann sheet (or the ‘physical’ plane) which turns at the Q2T or the 3BT, and goes down to
the ‘unphysical’ (2nd Riemann) sheet by each dotted line to A’ or B/, which gives the negative index number and generates a new
potential as shown in table 2 which seems to be the quark-quark interaction. This fact suggests that the quark-quark scattering (with
—|n|<0) could not be observed.

For the NN scattering by pion transfer larger than 2=n, however for a higher energy NN
scattering nucleon could be considered by a quark cluster where a quark-quark
iInteraction could be realized and mass less gluon or n=1 could occur. The left hand cut
Is defined bellow the Q2T (n=1), while the right hand cut is defined above the Q2T(n=1).
Therefore, the integral contour goes into the second Riemann sheet where the quark and
gluon could not be observed because of unphysical sheet.
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Riemann plane Coulomb-like potential
which has a pinching

singularity at Q2T

I 7 q
e T = T | R
\ /
\ ’
\\ 7
b ,/
~ - - - - -
Zmgqg
Yukawa-like potential
on the Riemann sheet
B A Q2T 3BT | Re q

—‘;WH:_——»

1 n=0
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Usual hadron-tr-hadron systems
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Borromean systems
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The Pade approximation & the continued fluxion method;
fl@) = R@)+0"") = | 2] (2) + 0"+

ag + a1z + asx® + - + ay ™

— m-+n-+1
1+ byx + boz? + -+ - + bz™ +0( )
b T 2
R(b? d? f? h) = a-+ d —a-+ 7 — |:§]f($) - R[Q/Q] ([L‘)
C + C +
e+ L e+ -
h T
g+ — g+ —
7 1
1
R[2f2] ([1/Va + 1/V;3]) - 1/Va + 1/V5]
bag + o [1/Va + 1/V5]
L [/Va+1/Vy]
o [1/Vi +1/Vg]
Cap T fap

5] (Ve + /7).
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Definition of three-body GPT potential by two-body GPT potentials
by the [0/1] Pade:

Hence, a truncated Padé: Rj/1)(z) becomes

R[U/l]([l/va + 1/V5D — baﬁ + [l/éa + 1/{/}3] (46)

_ Va Vs (47)
bapVaVis + Vi + Vi

= |Vsgpras (48)
with a constant b,s where the time ordering: [V, - Vj]
and [Vj3 - V,| are neglected.

Let us define a generalized three-body GPT (3GPT)
potential by

Vsapt = [VaapT]ag + [V3aprT)sy + [VacPT)va-
(49)
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Make 3-body GPT potential by 2-body GPT potential Ilay a Pade
Rio/11([1/Va + 1/V5]) = : —~ AL
[0/1] el B — bc}:ﬁ + [1/Vo: ] —

+1/Vglx. bosVaVs+ Vo + V5’
ba,ﬁ ~ En_ﬁvﬁ(raﬁ)/[va (T.S’T)Vﬁ (TTH)]" K Let us convert

A linearity of potential condition

AN

[Vgng(rﬂﬁ, T B, rm)] makes an AGS—Born

a8
N gaﬁ [ Vo (ry)V5(Tya) /] (54)

Va(rsy) + Va(Tya) £V (Tag)d’

Va (""ﬁw)vﬁ(""}*af)
Ehaa — Ho + 1€

_ Eaﬁ[ ] = |V3BFF|as (55)

A definition of Operator-Production is given by a complete set of hadron
which makes a short range 3-body potential with a small angular dependence.




Page 18 [Vaprr(qy,qs; Ehad)lag — dap
y 2 i < Valqy)|Valrs,)|s: >< 51‘Wﬁ@7a)|¢ﬁ(‘15) >}

Ehad — HU + 1€
. (56)
A 3-body short range potential by a complete hadron set
Z0p(Qy,a5; Eo) could be redefined by
Zap(da 95 o) = F|Vacrr(ra.ro.rs)| . (57)

So, the Green's function is modified by the three-body force.
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Fig. C represents usual three-body Green’s function between
two-body form factors for the three-nucleon systems.

Fig. D illustrates the well-known A-isobar transition Green’s
function between two-body form factors.

Fig. A is one nucleon transfer which wears several pions.

Fig. B indicates a special Green'’s function with three nucleons
and some pions where a time ordering of pion creation and
annihilation crossovers with the two-body interactions

V, and V.

1) Fig. C is the Green’s function of original Faddeev equation.

2) Fig. D is the origin of the Fujita-Miyazawa three-body force.

3) Fig. A is one of the Green’s function which includes an excited hadron.

4) Figs. C, D, A belong to a linear three-body Green’s function.

5) Fig. B belongs to a nonlinear Green’s function where the 3BF cannot be
separated into the two-body forces where pions occur an entanglement in

the three-body systems.
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an—l
S[F{Z}] — Z Q(iai!jﬁjjr;n)?‘(?‘—l—a)” - (15)
—2
— Z V{](’iai,jﬁj;ﬂ)e_#T for r <<a,(16)
—2
IImax ’r,l_,—]_
— Z Vi (ici, 185 m) aTn for a < 1(17)
3BLF Appl. n=2 S

_ For n=v
[VSBF(ﬁ)_ij — VSBF( ) truncation for short range part by b
. %(zah}ﬁj;y)alj

8A v/2 V"'(zaf jﬁj ) v—1
- [ } 0ij
3 P+ ph
PR (B13)

1”51'11' P
pv +p4 Y &
Non-diagoinal 3BLF
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OPEP: (with Yukawa'’s statistic approximation)

< 0|HY\. _|m ><m|H\. _|0>
W2 ~ Z{ | NQ-?T| | N]_-'J‘T|

k v
+ (1 <—)r2)}j E - (Hotw, )= — w,

where two-nucleon’s recoil effects are omitted.

e~ MnT

Vi(r) = Q7(r;2)——, Thisis the simplest form of Eq.(16) in Page 20.
R 3 3
Q" (r;2) = ?{01 02 + (1+ - + m%TQ)Su}

g1 - ‘T‘)(O’z . ?")

512 = 3(

— 01 " 09.
T
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In the three-body “He-n-n system, the 3BLF is a part of
the three-body potential: E[F{Z}] with the AGS-Born
term Z;,, js. where the short range part should be trun-

cated by using a factor b;; for Eq.(l?)\
Page 20

a"~t Vyliai, jBjsv)a”™!

lie -0,
%(zaiﬁjﬁjﬂy) rv — Ty_|_b;;j (19)




Page 23

Finally, the Hamiltonian is given by

H

= Ho + V3r(p)-
V7 (ri) Ve (ris)
VE (k) Ve (i)
V¥ ()| Vpr (i),

+ -+

A

Usual two-body

potentials
Two-body GPT

potentials

Three-body GPT
potential
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3BLF should be added to the traditional AGS-Born terms

-, s

N4 Hyd

O X Y

~~~~~~~~~~ -, B s

X O N2
:;____ I'}PE _ ::\____ 'ip” _
Ry T R W75 §

T YAl 0

where H, is the Heaviside step function which is defined in page 37
for the short range truncation.
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TABLE 1. The binding energy, the matter radius of °He are
shown for several cases: the first line by ref.[12], the second
by our method, the third by our different parameter choice.

The fourth line

[12] Thompson I. J., Danilin B. V., Efros V. D., Vaagen J. S.,
Bang J. M., Zhukov M. V., Pauli blocking in three-body
models of halo nuclei, Phys Rev, C 61 024318 (2000).

et

1S,

proper depth parameters V3 and ps; are chosen, respectively.

The experimental data is .30 & 0.07 [fm]|[31].

IHetn+ v Vs p3 binding matter
ef?H n+n [MeV]| |[fm]|energy [MeV]|radius [fm]
e
3 [12]|—2.4000] 5.0 —0.98 2.55
/ 3 |—2.4000| 5.0 —0.98 2.56
21-transfer Neutron transfer GPT n2v =7.96

7.96x | —7.2960| 2.5 —0.98

2.35

where V; and p; should be analytically obtained.
Therefore, the GPT theory is completed, coherent and predictable.

Thompson et al

Thompson like
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TABLE Il Pion effects for the ®He binding energy and the matter radius of
neutron transfer case in TABLE | with respect of two-body GPT potentials
in the Hamiltonian of page 23.
nmax is defined by Eq.(17) of page 20.

nmax| binding matter
energy [MeV]||radius [fm]
2 —0.89 2.34
3 —0.93 2.35
1 —0.96 2.35
3 —0.97 2.35
6 —0.98 2.35
7 —0.98 2.35
8 —0.98 2.35
9 —0.98 2.35

The results show that the pion transfer effects in the two-body form factors (or the
two-body GPT potentials) are very small.
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Summary

@ There are two-types of 3-body forces, one is the 3-body short
range force: 3BSF and another is the 3-body long range
force: 3BLF.

@ The three-body Coulomb force (3BCF) is generated by
a kind of “photon entanglement” in the long range region.

Therefore, the 3BCF can not be separated into
the two-body Coulomb potentials, but a 3BLF
In the three-body systems.

@ By the same way, the 3BSF and 3BLF occur in the three-
body very short renge and a very long range region.

They can not be separated into two-body potentials.
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@ The 3-body Faddeev equation is only used for a linear three-
body space in the middle range region.
Therefore, the three-body forces are additional force
In the entire region.
The three-body primitive potential given by the three-body
Faddeev kernel is generalized by using a quantized 3-body
GPT potential.

® The 3-body Faddeev equation is represented by a multi-
channel quantized Lippmann Schwinger equation.

X(_ q: Ecm) — Z(E, gf Ecm)

_I_/ Z(q q Ecm)T(q LIH)X(ngqIEEcm)dgH
0

0<Em=FE+eg<oo; 0<g<oo.
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® A quantized potential is made from a primitive potential with
Egs. (1),(2) of page 3 by our GPT method, where the
guantized particles and their dynamics are defined.
The new concept may be a counter part to the traditional
thought that “a particle exchange makes a potential”.

@ The quantized potential is defined in an entire space (from
a very short range to a very long range) where the Faddeev
equation is verified in a linear space of a middle range.

The quantum hadronic meshed area could be represented
by a pion-gage, while the quantum electro-magnetic area
could be defined by an electron-photon-gauge.
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END
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Appendix
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Hyper radius formular

A A, Ti = \/AjkTjk

A = :
J Aj + A Yi = \/AGR)iT (k)i

) (A; + Ap)A; p° =z +y;,
(Jk)i — 4 |
Ai +4; + Ay 0. = arctan (TT’),
Yi
p? = ai+yl =23 +y; =23+ 3
A + Ap)A; A;
_ (A + Ax) r2 — 8 ] 2
A«;‘,—I—Aj—FA,&; 3

o= \/3/84,]p
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Therefore, a channel component of the 3GPT potential
for « — [3 becomes

\VaapT (T, T8, T)]|ag = [VHGPT(TQ,S':T;S'%TWQ)] ;
¥

= [baﬁ +{Va(rs))} ™~ +{Vs (rw)}_ll - (50)

— Va(rﬁ’)’)vﬁ(r’]’c‘f) (51)
basVa(Tsy)Va(Tya) + [Va(rsy) + Va(rya)]

_ [ba5+ S {Qﬁw(?’ﬁw%ﬂ);__ll}‘l

S ry(rpy +a
Qya(Tya;n)a™” }—1]—1
52
+ Z {T'}«a TTQ+G)?1 1 ’ ( )
nN=nog

where ng, and nos depend on the transfered particle
masses.
In Eq.(51), if we choose a constant by

bas ~ 008V (Tap)/[Va(rsy)Va(Tya)], (53)

where the 3GPT potential is a linear potential as the Faddeev's kernel.
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In the former paper [1], we defined the three-body GPT (3GPT) force from the a-
channel to the S-channel by

_ 1 11
[V:sGPT(?‘aJ’ﬁaT'w)] s 0ap [baﬁ + {Valrsy) ) +{Vs(rya)} ] :
page 20
For the long-range limit, Eq.(17 ¥becomes a three-body long-range force (3BLF) for n=2

[V3GPT('Pm T3, T'y):| = Z {‘/%GPT(TQ? T3, T’y)}

a#Brrta=1 of

—1
— {I/E;BLF(T‘Q? T3, 'F»),)j| = Vg [d + a,('r'gq,)z + b(rm)z + C("'a,ﬁ‘)z] s

where if we take a = b = ¢ = 1, then V3pr is equivalent to that of ref.[4]. It was pointed
out that this kind of potential is similar to the Efimov potential in the long-range
limit [1],[17][18] where d indicates a truncation of the short-range part.
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For the next, three kinds of 3BLF were introduced
by using Eq.(19f and the Heaviside step function H; =
H.(7.96 — v) (Appendix B),

’V: L/ _
X Vapr(p) = P :f)j),,: (21)
3
Y
X VQBF(‘O) o ;OU +plf Hl(sij(s&'iﬁj? (22)
3
’V: pu .
Vapr(p) = p,,:j)yHl(Sij(Sa.iﬁj' (23)
3

The 3BLF from the a-channel to B-channel should not be a symmetric form
but an asymmetric form like (23).

However, the traditional 3BSF in the three-nucleon system adopts almost
symmetric form which started from the Fujita-Miyazawa (A-isobar bases)
type and a point-like interaction. Therefore, even if we adopt a chiral
perturbation 3BSF, they are almost symmetric 3BSF as seen in Eqgs (21) and
(22).
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(22)+Z

— -

L?%ﬂ? H

O-F 6(1
py 1 pu 1Y%3 '}_;

(D a neutron transfer potential makes a long range
potential with v=7. 96.

an alpha particle transfer GPT potential has almost

no effect for the long range.
@ The 2GPT based 3GPT potential generates
an asymmetric 3BF potential.
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