Self-bound bosonic droplets

Dam Thanh Son (University of Chicago)

Universality of Quantum Systems: From Cold Atoms, Nuclei, to Hadron Physics

Tohoku University, Sep 5, 2024

He-4 droplets

- He-4 atoms form droplets with any number of atoms
- Binding energy: $B_2 \sim 1$ mK ….. $B_3 \sim 100$ mK $B_N \sim N(7.1 \text{ K})$

Universal regime in droplets?

- 2D bosons with weak short-range attraction
- $B_2 \sim \Lambda^2 e^{-4\pi/g}$
- $B_3 = 16.52B_2, B_4 = 197.2B_2$
- $B_N \sim 8.576^N$

Unitarity bosons in 3D?

- 3 bosons: infinite number of bound states (Efimov)
- 4 bosons: 2 4-body states for each 3-body state
	- the ground state energy not expected to be universal
- Situation with a large number of bosons not completely clear

Narrow resonance

- One way to regularize the short-distance physics: introduce an effective range $r_{\rm 0}$
	- ignoring all higher shape parameters
- $r_0 > 0$: unphysical pole in the scattering amplitude (Wigner)
- Assume $r_0 < 0$ and large: narrow resonance

Field theory

$$
\bullet \quad \mathcal{L} = \psi^{\dagger} \left(i \partial_t + \frac{\nabla^2}{2} \right) \psi + \phi^{\dagger} \left(i \partial_t + \frac{\nabla^2}{4} \right) \phi + \alpha (\psi^{\dagger} \psi^{\dagger} \phi + \phi^{\dagger} \psi \psi) - \nu \phi^{\dagger} \phi
$$

• theory well-defined in the UV

• Matching with scattering amplitude:

$$
\alpha = \sqrt{\frac{4\pi}{-r_0}} \qquad \qquad \nu = \frac{2}{r_0 a}
$$

3-body problem

• The three-body problem with bosons with narrow resonance was recently solved by van Kolck and Griesshammer

• At $a = \infty$, 3-body ground state $B \approx 0.055 \frac{a}{2}$, infinite tower of Efimov states \hbar^2 *mr*² 0

• 3-body bound state exists in a finite range of 1/a:

$$
-\frac{c_1}{|r_0|} < \frac{1}{a} < \frac{c_2}{|r_0|}
$$

Droplet: energy minimization

- $N \gg 1$: many bosons in one quantum state \rightarrow classical field configuration
- Need to minimize the energy

$$
H = \int dx \left[\frac{|\nabla \psi|^2}{2} + \frac{|\nabla \phi|^2}{4} - \alpha (\psi^{\dagger} \psi^{\dagger} \phi + \phi^{\dagger} \psi \psi) \right]
$$

under the constraint $\int d\mathbf{x} (\psi^{\dagger}\psi + 2\phi^{\dagger}\phi) = N$

Variational ansatz

• Let $f(x)$ be a shape function example: $f(x) =$ 1 cosh *x*

$$
\psi(r) = \frac{1}{(4\pi I_2)^{1/2}} \sqrt{\frac{cN}{R^3}} f\left(\frac{r}{R}\right)
$$

$$
\phi(r) = \frac{1}{(8\pi I_2)^{1/2}} \sqrt{\frac{(1-c)N}{R^3}} f\left(\frac{r}{R}\right)
$$

$$
I_2 = \int_0^\infty dx \, x^2 f^2(x)
$$

• Two overlapping condensates of same shape and size cN atoms, $\frac{1}{2}(1-c)N$ molecules $\frac{1}{2}(1-c)N$

Variational energy

•
$$
E(R) = a(c)\frac{N}{R^2} - b(c)\frac{N^{3/2}}{R^{3/2}}
$$

- *a*(*c*) ∼ 3*c* + 1 *b*(*c*) ∼ *c* $\sqrt{1-c}$
- Competition between kinetic and Rabi coupling

Variational energy (II)

- Minimizing over $c: c \approx 0.521 \rightarrow E = -0.0316N^3$
- **Better variational Ansatz:**

$$
E = -0.0347N^3 \frac{\hbar^2}{mr_0^2}
$$

Away from unitarity

$$
\bullet \quad H = H_{a=\infty} + \nu \int \mathrm{d}\mathbf{x} \, \phi^\dagger \phi \qquad \nu = -\frac{2\hbar^2}{m|r_0|a}
$$

• Using single-profile Ansatz:

$$
E(R) = a(c)\frac{N}{R^2} - b(c)\frac{N^{3/2}}{R^{3/2}} + \frac{\nu}{2}N(1 - c)
$$

Minimizing over R:

$$
E(c) = -N^3 A \frac{c^4 (1 - c)^2}{(c + \frac{1}{3})^3} + \frac{\nu}{2} N(1 - c)
$$

$$
\frac{2|r_0|}{a} = -0.123A
$$

Summary so far

- Bosons at unitarity, large negative effective range (narrow resonance) seem to form bound state with any *N*
- At large N the size of the droplet decreases as $1/N$, binding energy increases as N^3
- Tuning away from unitarity: the N-body bound state exists in a finite range of inverse scattering length

$$
-0.191N^2 < \frac{2\left|r_0\right|}{a} < 0.140N^2
$$

Very high N

• At very large N, the density in droplets becomes very large: terms formerly ignored needs to be taken into account

$$
H_{\text{bg}} = \frac{1}{2} \int d\mathbf{x} (g_{11} |\psi|^4 + 2g_{12} |\psi|^2 |\phi|^2 + g_{22} |\phi|^4)
$$

• Now a very large droplet has a constant center density

$$
n \sim \frac{1}{a_{ij}^2 |r_0|} \ll \frac{1}{a_{ij}^3}
$$
: still dilute

• Droplet binding energy saturates to *E* ∼ *N*

FIG. 1. Droplet binding energy per particle for $g_{11} = 4\pi a_{\text{bg}}$, $g_{22} = 2g_{11}/3$, $g_{12} = g_{22}/2$, and $a_{bg} = |r_0|/320$. The fit at large *N* is motivated by the picture of a droplet with finite surface tension.

Away from unitarity

 $r_{\rm 0}$

FIG. 2. Phase diagram in the plane of chemical potential μ and detuning ν in units of $1/(a_{\text{bg}}|r_0|)$ for $g_{11} = 4\pi a_{\text{bg}}$, $g_{22} = 2g_{11}/3$, and $g_{12} = g_{22}/2$. Solid and dashed lines represent first- and second-order transitions, respectively. The

Conclusions

- Bosons at narrow s-wave resonance can form self-bound droplets
- The binding energy of N bosons scales as N^3
- Open questions:
	- quantum (beyond mean field) corrections
	- small-N (N=4, 5 etc) clusters
	- experimental realization?

A remark about self-bound fermonic droplets

- 3He atoms form self-bound clusters at *N* > N_{crit} ~ 20 − 40
- But 3He is rather far from unitarity: can increase the strength of interaction to reach unitarity
- Presumably N_{crit} will be smaller
- Example of fermions at unitarity, but short-distance physics allow self-bound clusters. Lessons for neutrons?