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He-4 droplets

• He-4 atoms form droplets with any number of atoms


• Binding energy:  
                           
                          ….. 
                          

B2 ∼ 1 mK
B3 ∼ 100 mK

BN ∼ N (7.1 K)



Universal regime in 
droplets?

• 2D bosons with weak short-range attraction


• 


• , 


•

B2 ∼ Λ2e−4π/g

B3 = 16.52B2 B4 = 197.2B2

BN ∼ 8.576N



Unitarity bosons in 3D?

• 3 bosons: infinite number of bound states (Efimov)


• 4 bosons: 2 4-body states for each 3-body state


• the ground state energy not expected to be universal


• Situation with a large number of bosons not completely 
clear



Narrow resonance

• One way to regularize the short-distance physics: 
introduce an effective range 


• ignoring all higher shape parameters


•  unphysical pole in the scattering amplitude 
(Wigner)


• Assume  and large: narrow resonance

r0

r0 > 0 :

r0 < 0



Field theory

• 


• theory well-defined in the UV


• Matching with scattering amplitude: 
  

                           

ℒ = ψ†(i∂t +
∇2

2 )ψ + ϕ†(i∂t +
∇2

4 )ϕ + α(ψ†ψ†ϕ + ϕ†ψψ) − νϕ†ϕ

α =
4π
−r0

ν =
2

r0a



3-body problem
• The three-body problem with bosons with narrow 

resonance was recently solved by van Kolck and 
Griesshammer


• At , 3-body ground state , infinite 

tower of Efimov states


• 3-body bound state exists in a finite range of 1/a: 
 

                   

a = ∞ B ≈ 0.055
ℏ2

mr2
0

−
c1

|r0 |
<

1
a

<
c2

|r0 |





Droplet: energy 
minimization

•  many bosons in one quantum state  classical 
field configuration


• Need to minimize the energy 
 

 

 

under the constraint  

N ≫ 1 : →

H = ∫ dx [ |∇ψ |2

2
+

|∇ϕ |2

4
− α(ψ†ψ†ϕ + ϕ†ψψ)]

∫ dx (ψ†ψ + 2ϕ†ϕ) = N



Variational ansatz
• Let  be a shape function  example:  

 

           

 

   


• Two overlapping condensates of same shape and size 
 atoms,  molecules

f(x) f(x) =
1

cosh x

ψ(r) =
1

(4πI2)1/2

cN
R3

f ( r
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Variational energy

•       

 
                   


• Competition between kinetic and Rabi coupling 
 
 

                                                           

E(R) = a(c)
N
R2

− b(c)
N3/2

R3/2

a(c) ∼ 3c + 1 b(c) ∼ c 1 − c

R =
16a2

9b2
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Variational energy (II)
• After minimizing over R 

 

       


• Minimizing over    


• Better variational Ansatz: 
 

              

E(c) = − AN3 c4(1 − c)2

(c + 1
3 )3

c : c ≈ 0.521 → E = − 0.0316N3

E = − 0.0347N3 ℏ2

mr2
0

0.2 0.4 0.6 0.8 1.0

-0.025

-0.020

-0.015

-0.010

-0.005



Away from unitarity
•         


• Using single-profile Ansatz: 
 

 

 
Minimizing over R: 
 

 

 

H = Ha=∞ + ν∫ dx ϕ†ϕ ν = −
2ℏ2

m |r0 |a

E(R) = a(c)
N
R2

− b(c)
N3/2

R3/2
+

ν
2

N(1 − c)

E(c) = − N3A
c4(1 − c)2

(c + 1
3 )3

+
ν
2

N(1 − c)
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Summary so far
• Bosons at unitarity, large negative effective range (narrow 

resonance) seem to form bound state with any  


• At large N the size of the droplet decreases as , 
binding energy increases as 


• Tuning away from unitarity: the N-body bound state exists 
in a finite range of inverse scattering length 
 

    

N

1/N
N3

−0.191N2 <
2 |r0 |

a
< 0.140N2



Very high N
• At very large N, the density in droplets becomes very 

large: terms formerly ignored needs to be taken into 
account 
 




• Now a very large droplet has a constant center density 
 

          :   still dilute


• Droplet binding energy saturates to  
 
   

Hbg =
1
2 ∫ dx (g11 |ψ |4 + 2g12 |ψ |2 |ϕ |2 + g22 |ϕ |4 )

n ∼
1

a2
ij |r0 |

≪
1
a3

ij

E ∼ N
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FIG. 1. Droplet binding energy per particle for g11 = 4⇡abg,
g22 = 2g11/3, g12 = g22/2, and abg = |r0|/320. The fit at
large N is motivated by the picture of a droplet with finite
surface tension.

We will limit ourselves to the case g12 > 0. Then at
µ = 0 and ⌫ = ⌫+(1), with

⌫+(1) =
2↵2

g11
=

2~2
ma11|r0|

, (23)

the coe�cients of both the | |2 and the | |4 term vanish.
This point is the tricritical point T in Fig. 2. For ⌫ >

⌫+(1), as one changes µ there is a phase transition at
µ = 0 from the vacuum to the Bose-Einstein condensate
(BEC). For these values of ⌫ the self-bound liquid does
not exist. On the other hand, for ⌫ < ⌫+(1) there is a
first-order phase transition between the vacuum and the
self-bound fluid. Thus, ⌫+(1) is the N ! 1 limit of the
upper value detuning parameter for which the N -particle
droplet exists.

At negative detuning, the line of vacuum-liquid first-
order phase transition continues to exist at negative ⌫
and meets the second-order phase transition line µ = ⌫/2
at a critical end point [24] (point S in Fig. 2) at

⌫�(1) = �
2↵2

p
g11g22 + g12

= �
2
p
2~2

m|r0|(
p
a11a22 +

3p
2
a12)

. (24)

For ⌫ slightly smaller than ⌫�(1), as one increases µ, the
system goes through two phase transitions: first from the
vacuum to a molecular BEC state with  = 0, � 6= 0, and
then to a hybrid condensate phase with  6= 0, � 6= 0.
Since the hybrid condensate does not phase-coexist with
the vacuum, there is no stable droplet consisting of any
finite number of atoms. The first-order phase transition
line between the hybrid condensate phase and the molec-
ular BEC phase is a straight line that terminates at a Z2

tricritical point (point Z in Fig. 2) [18].

FIG. 2. Phase diagram in the plane of chemical potential
µ and detuning ⌫ in units of 1/(abg|r0|) for g11 = 4⇡abg,
g22 = 2g11/3, and g12 = g22/2. Solid and dashed lines rep-
resent first- and second-order transitions, respectively. The
grey region represents the vacuum where the particle den-
sity is zero, the green region indicates the molecular BEC
phase ( = 0,� 6= 0), and the orange region corresponds to
the hybrid condensate phase ( 6= 0,� 6= 0). The tricriti-
cal points are T = (0, ⌫+(1)) and Z = (µZ2 , ⌫Z2) [18], while
S = (⌫�(1)/2, ⌫�(1)) is the critical end point shared by the
three phases.

Conclusion.—In this Letter, we have considered the
problem of a droplet of a finite but large number of
bosonic atoms at a narrow Feshbach resonance. We find
that the binding energy per particle should increase like
N

2 and then flatten out to a constant.
In this work we have considered only the case when all

atoms are identical bosons. It should be straightforward
to extend the calculation to the case when the narrow
resonance is formed from two nonidentical bosons.
The calculations in this paper are performed in the

mean field approximation. For a small number of parti-
cles it will be important to compute quantum corrections
to the energy. It would also be interesting if one could
solve the four-body problem, e.g., by extending the zero-
range calculations of Ref. [25] to an interaction with fi-
nite and negative e↵ective range. For larger N , one may
hope to find the binding energy through Monte Carlo
methods [26].
Experimentally, one system where one may be able to

create bound droplets is ultracold cesium at Feshbach
resonance. For Cs the resonance at B = 19.849(2)G has
a very small width of � = 8.3(5)mG [27]. The e↵ective
range can be evaluated through [28]

r0 ' �
2~2

m� �µabg
. (25)

Using �µ = 2⇡~ ⇥ 0.76(3)MHz/G and abg = 163(1)a0
(a0 being the Bohr radius), we find r0/abg = �320(20).



Away from unitarity
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Conclusions
• Bosons at narrow s-wave resonance can form self-bound 

droplets


• The binding energy of N bosons scales as 


• Open questions: 


• quantum (beyond mean field) corrections


• small-N (N=4, 5 etc) clusters


• experimental realization?

N3



A remark about self-bound 
fermonic droplets

• 3He atoms form self-bound clusters at 



• But 3He is rather far from unitarity: can increase the 
strength of interaction to reach unitarity


• Presumably  will be smaller


• Example of fermions at unitarity, but short-distance 
physics allow self-bound clusters. Lessons for neutrons?

N > Ncrit ∼ 20 − 40

Ncrit


